Skip to content

FakePartsBench: 25K+ AI-generated videos with pixel- and frame-level annotations of full and partial deepfakes.

License

Notifications You must be signed in to change notification settings

hi-paris/FakeParts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

14 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

HF Downloads Python Version Code Style: Black License Hugging Face Dataset arXiv

FakeParts: A New Family of AI-Generated DeepFakes

FakeParts are partial deepfakesβ€”localized spatial or temporal edits that blend into otherwise real videos. FakePartsBench is the first benchmark purpose-built to evaluate them.

FakePartsBench teaser

Pipeline overview


Summary

  • Problem. Most detectors and datasets focus on fully synthetic videos. Subtle, localized edits (FakeParts) are under-explored yet highly deceptive.
  • Solution. We define FakeParts and release FakePartsBench: 25K+ videos with pixel-level and frame-level annotations covering full deepfakes (T2V/I2V/TI2V) and partial manipulations (faceswap, inpainting, outpainting, style change, interpolation).
  • Finding. Humans and SOTA detectors miss many FakeParts; detection accuracy drops by 30–40% versus fully synthetic content.
  • Use. Train and evaluate detectors that localize where and when manipulations happen.

Contents πŸ“•


News ✨

  • 2025- Dataset and benchmark released (including closed- and open-source generations).
  • 2025- Baseline evaluation code (image- and video-level detectors).

Dataset πŸ’½

FakePartsBench provides:

  • 25,000+ manipulated clips + 16,000 real clips

  • High-res content (up to 1080p), durations typically 5–14 s

  • Annotations: frame masks (spatial), manipulated frames (temporal)

  • Categories:

    • Full deepfakes: T2V / I2V / TI2V (Sora, Veo2, Allegro AI)
    • Spatial FakeParts: Faceswap (InsightFace), Inpainting (DiffuEraser, ProPainter), Outpainting (AKiRa)
    • Temporal FakeParts: Interpolation (Framer)
    • Style FakeParts: Style change (RAVE)

Download (mirrors):

Each sample ships with metadata (prompt, source/cond frame when applicable, resolution, FPS) and, for FakeParts, per-frame masks or frame lists of manipulated regions/segments.


Paper πŸ“

FakeParts: a New Family of AI-Generated DeepFakes GaΓ«tan Brison, Soobash Daiboo, Samy AΓ―meur, Awais Hussain Sani, Xi Wang, Gianni Franchi, Vicky Kalogeiton Hi! PARIS / Institut Polytechnique de Paris / LIX / ENSTA Paris Preprint, under review.


Repo Structure 🌳

FakeParts/
β”œβ”€ annotation/                # human study annotation tools
β”‚  β”œβ”€ app.py                  # Streamlit survey app
β”‚  β”œβ”€ preprocessing_remove_au.py
β”‚  └─ requirements.txt        # annotation dependencies
β”œβ”€ assets/                    # figures for README/paper
β”‚  β”œβ”€ final_teaser.png
β”‚  └─ pipeline.jpg
β”œβ”€ detection/                 # baseline detectors
β”‚  β”œβ”€ AIGVDet/
β”‚  β”œβ”€ C2P-CLIP/
β”‚  β”œβ”€ CNNDetection-master/
β”‚  β”œβ”€ DeMamba/
β”‚  β”œβ”€ FatFormer/
β”‚  β”œβ”€ HiFi_IFDL-main/
β”‚  β”œβ”€ NPR/
β”‚  └─ UniversalFakeDetect-*/
β”œβ”€ generation/                # FakeParts generators
β”‚  β”œβ”€ Faceswap/
β”‚  β”œβ”€ Inpainting/
β”‚  β”œβ”€ Interpolation/
β”‚  β”œβ”€ Outpainting/
β”‚  β”œβ”€ Stylechange/
β”‚  └─ T2V/

Tip: Place your images in assets/ (the README references assets/final_teaser.png and assets/pipeline_xi.jpg).


Installation πŸ“¦

# (A) Conda (recommended)
conda create -n fakeparts python=3.10 -y
conda activate fakeparts
pip install -r env/requirements.txt

# (B) Extras (for video I/O & metrics)
# pip install av opencv-python imageio[ffmpeg] decord torch torchvision
  • FFmpeg required for decoding/encoding (ffmpeg -version should work).
  • Some baselines may require CUDA (see their READMEs in baselines/).

Quickstart πŸš€

Download the dataset

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("hi-paris/FakeParts")

# Inspect the data
print(dataset)

Evaluation Protocol πŸ’―

We report:

  • Binary detection (real vs. fake) at video and frame levels
  • Localization for FakeParts: IoU on manipulated masks (spatial) and frames (temporal)
  • Quality & consistency: FVD (optional), VBench subset (consistency, flicker, quality)

Default metrics: Accuracy, F1, mAP (per category + macro avg). Recommended splits: use index.json or our CSVs to reproduce the paper.


Reproducing Baselines πŸ“Š

We provide wrappers and configs to reproduce a wide range of image-level and video-level detectors. Each baseline follows the authors’ official implementation as closely as possible.

Image-level πŸ–ΌοΈ

  • CNNDetection (Wang et al., CVPR’20) – CNN-based universal fake image detector trained on diverse forgeries.
  • UniversalFakeDetector (UFD) (Ojha et al., CVPR’23) – CLIP-based zero-shot detector, effective across manipulation types.
  • FatFormer (Zhao et al., ICCV’23) – multi-scale attention transformer tuned for subtle manipulations.
  • C2P-CLIP (Xu et al., arXiv’24) – contrastive fine-tuning of CLIP for part-level detection.
  • NPR (Zhang et al., NeurIPS’24) – noise-pattern representation learning to capture subtle editing traces.
  • HiFi-IFDL (Li et al., arXiv’24) – high-fidelity feature disentanglement for manipulation detection.

Video-level πŸŽ₯

  • AIGVDet (Bai et al., PRCV’24) – multi-branch detector combining spatial cues and optical flow.
  • DeMamba (Chen et al., arXiv’24) – state-space model for long-range temporal forgery localization.

Human Study πŸ‘¨πŸΌβ€πŸ«

We release a Streamlit-based survey used in the paper.

cd annotation
pip install -r requirements.txt
streamlit run app.py -- --root /path/to/FakePartsBench

Participants label real vs. fake and provide short rationales per clip.


Results Snapshot 🎯

Average β€œfake” confidence by detectors vs. humans (higher = better fake detection):

Category AIGVDet CNNDetection DeMamba UniversalFakeDetect FatFormer C2P-CLIP NPR Human Detection
Acc. on orig. testset 0.914 0.997 0.971 0.843 ~0.990 >0.930 >0.925 –
T2V 0.301 0.000 0.342 0.073 0.183 0.176 0.579 0.763
I2V 0.292 0.001 0.323 0.083 0.129 0.157 0.417 0.715
IT2V 0.483 0.000 0.514 0.072 0.161 0.131 0.666 0.821
Stylechange 0.265 0.000 0.308 0.295 0.100 0.288 0.105 0.983
Faceswap 0.216 0.000 0.265 0.031 0.620 1.000 0.000 0.612
Real (false-positive) 0.155 0.007 0.191 0.052 0.008 0.004 0.038 0.242
Interpolation 0.137 0.000 0.170 0.228 0.360 0.396 0.056 0.676
Inpainting 0.074 0.003 0.089 0.337 0.213 0.171 0.264 0.588
Outpainting 0.060 0.000 0.072 0.025 0.096 0.125 0.014 0.800

Takeaway: Partial manipulations (FakeParts) are significantly harder for current detectors than fully synthetic videosβ€”and also harder for humans.


Citations ✍️

If you use FakeParts please cite:

@article{brison2025fakeparts,
  title   = {FakeParts: a New Family of AI-Generated DeepFakes},
  author  = {Ga{\"e}tan Brison and Soobash Daiboo and Samy A{\"i}meur and
             Awais Hussain Sani and Xi Wang and Gianni Franchi and Vicky Kalogeiton},
  journal = {arXiv preprint},
  year    = {2025}
}

License & Responsible Use πŸ”¨

  • Code: see LICENSE (default: BSD-3-Clause unless noted otherwise in subfolders).

  • Dataset: released for research and defensive purposes only.

    • Do not attempt to identify private individuals.
    • Do not use for generating disinformation or harassment.
    • Faceswap content uses celebrity imagery to avoid sensitive personal data.
  • Please comply with third-party model/data licenses cited in the paper and baselines/.


Acknowledgements πŸ’‘

This work was conducted at Hi! PARIS, Institut Polytechnique de Paris, LIX (Γ‰cole Polytechnique), and U2IS (ENSTA Paris). We thank the authors and teams behind Sora, Veo2, Allegro, Framer, RAVE, InsightFace, DiffuEraser, ProPainter, AKiRa, as well as the maintainers of DAVIS, YouTube-VOS, MOSE, LVD-2M, and Animal Kingdom.

A special thanks to the DeepMind team working on Veo2 and Veo3 for granting us early API access.


Contact πŸ“§

Questions, issues, or pull requests are welcome!

  • GaΓ«tan Brison β€” maintainer
  • Soobash Daiboo, Samy AΓ―meur, Awais Hussain Sani
  • Xi Wang, Gianni Franchi, Vicky Kalogeiton

About

FakePartsBench: 25K+ AI-generated videos with pixel- and frame-level annotations of full and partial deepfakes.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published