Skip to content

hamkerlab/ML-Karoprod-MeshPredictor

Repository files navigation

Mesh predictor

Tensorflow and optuna-based utility to learn to predict several quantities (position, deviation, thickness) based on a set of process parameters of FEM experiments.

The documentation is at https://hamkerlab.github.io/ML-Karoprod-MeshPredictor/.

Installation

Dependencies:

  • numpy
  • pandas
  • matplotlib
  • ipywidgets
  • tensorflow >=2.6
  • optuna
  • h5py
pip install git+https://github.com/hamkerlab/ML-Karoprod-MeshPredictor.git@master

Documentation

To generate the documentation, you will need:

pip install mkdocs mkdocs-material mkdocstrings pymdown-extensions mknotebooks

To see the documentation locally:

mkdocs serve

To push to github:

mkdocs gh-deploy

About

Mesh regression library of the ML@Karoprod BMBF project

Resources

License

Stars

Watchers

Forks

Packages

No packages published