Tensorflow and optuna-based utility to learn to predict several quantities (position, deviation, thickness) based on a set of process parameters of FEM experiments.
The documentation is at https://hamkerlab.github.io/ML-Karoprod-MeshPredictor/.
Dependencies:
- numpy
- pandas
- matplotlib
- ipywidgets
- tensorflow >=2.6
- optuna
- h5py
pip install git+https://github.com/hamkerlab/ML-Karoprod-MeshPredictor.git@master
To generate the documentation, you will need:
pip install mkdocs mkdocs-material mkdocstrings pymdown-extensions mknotebooks
To see the documentation locally:
mkdocs serve
To push to github:
mkdocs gh-deploy