Skip to content
forked from am0y/mcp-fal

A Model Context Protocol (MCP) server for interacting with fal.ai models and services.

License

Notifications You must be signed in to change notification settings

halr9000/mcp-fal

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fal.ai MCP Server

A Model Context Protocol (MCP) server that lets MCP-compatible clients list, inspect, and run fal.ai models via stdio. Use it to integrate fal.ai’s serverless GPU inference into tools like Claude Desktop, Cursor, Windsurf, VSCode (Cline), and more.

What is fal.ai (overview)

fal.ai is a serverless platform for running and fine‑tuning generative AI models on managed GPU infrastructure. It provides production‑grade REST and WebSocket APIs, streaming outputs, batch/queued processing, SDKs for Python/JS, autoscaling, and global GPU fleets (A100/H100 and more) for low‑latency inference of image, video, audio, 3D, and speech models.

Purpose of this MCP server

This server exposes convenience tools to your MCP client for:

  • List/Search models and retrieve model schemas.
  • Run generation with synchronous or queued execution, plus queue status/result helpers.
  • Upload files to the fal.ai CDN for model inputs.

See tool reference below for exact names and parameters.

Prerequisites

On Windows (PowerShell):

$env:FAL_KEY = "YOUR_FAL_API_KEY_HERE"

On macOS/Linux (bash/zsh):

export FAL_KEY="YOUR_FAL_API_KEY_HERE"

Run with uvx (no local install)

  • This repo (example)
uvx --from git+https://github.com/halr9000/mcp-fal@main mcp-fal

Configure common MCP clients

Below is a minimal configuration that launches this server via uvx and passes your FAL_KEY.

  • Claude Desktop (Windows: %AppData%/Claude/claude_desktop_config.json, macOS: ~/Library/Application Support/Claude/claude_desktop_config.json)
{
  "mcpServers": {
    "fal.ai": {
      "command": "uvx",
      "args": [
        "--from", "git+https://github.com/halr9000/mcp-fal@main",
        "mcp-fal"
      ],
      "env": { "FAL_KEY": "YOUR_FAL_API_KEY_HERE" }
    }
  }
}
  • Cursor (~/.cursor/mcp.json)
{
  "mcpServers": {
    "fal.ai": {
      "command": "uvx",
      "args": [
        "--from", "git+https://github.com/halr9000/mcp-fal@main",
        "mcp-fal"
      ],
      "env": { "FAL_KEY": "YOUR_FAL_API_KEY_HERE" }
    }
  }
}
  • Windsurf (~/.codeium/windsurf/mcp_config.json)
{
  "mcpServers": {
    "fal.ai": {
      "command": "uvx",
      "args": [
        "--from", "git+https://github.com/halr9000/mcp-fal@main",
        "mcp-fal"
      ],
      "env": { "FAL_KEY": "YOUR_FAL_API_KEY_HERE" }
    }
  }
}

Local development (clone & run)

git clone https://github.com/halr9000/mcp-fal.git
cd mcp-fal
uv sync
uv run mcp-fal

Or run the inspector during development:

uv run -s inspect

Run directly from the local path with uvx (no venv activation):

uvx ./
# or explicitly
uvx ./mcp-fal

Tools reference

  • models(page=None, total=None) — list available models (optional pagination)
  • search(keywords) — search for models by keyword(s)
  • schema(model_id) — fetch OpenAPI schema for a model
  • generate(model, parameters, queue=False) — run a model (sync or queued)
  • status(url) / result(url) / cancel(url) — manage queued requests
  • upload(path) — upload a file to fal.ai CDN

License

MIT

About

A Model Context Protocol (MCP) server for interacting with fal.ai models and services.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%