Skip to content

Add some imports and remove some style elements to make the validator _maybe_ compatible with Python 3.9. #3

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 10 additions & 10 deletions validator/main.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import math
from typing import Callable, Optional, Union
from typing import Callable, List, Optional, Union

import torch
from torch.nn import functional as F
Expand Down Expand Up @@ -140,7 +140,7 @@ def _mean_pool(model_output, attention_mask):
input_mask_expanded.sum(1), min=1e-9
)

def _embed(self, prompts: list[str]):
def _embed(self, prompts: List[str]):
"""Taken from https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
We use the long-form to avoid a dependency on sentence transformers.
This method returns the maximum of the matches against all known attacks.
Expand All @@ -160,8 +160,8 @@ def _embed(self, prompts: list[str]):

def _match_known_malicious_prompts(
self,
prompts: list[str] | torch.Tensor,
) -> list[float]:
prompts: Union[List[str], torch.Tensor],
) -> List[float]:
"""Returns an array of floats, one per prompt, with the max match to known
attacks. If prompts is a list of strings, embeddings will be generated. If
embeddings are passed, they will be used."""
Expand All @@ -179,7 +179,7 @@ def _match_known_malicious_prompts(
def _predict_and_remap(
self,
model,
prompts: list[str],
prompts: List[str],
label_field: str,
score_field: str,
safe_case: str,
Expand All @@ -199,7 +199,7 @@ def _predict_and_remap(
scores.append(new_score)
return scores

def _predict_jailbreak(self, prompts: list[str]) -> list[float]:
def _predict_jailbreak(self, prompts: List[str]) -> List[float]:
return [
DetectJailbreak._rescale(s, *self.text_attack_scales)
for s in self._predict_and_remap(
Expand All @@ -212,7 +212,7 @@ def _predict_jailbreak(self, prompts: list[str]) -> list[float]:
)
]

def _predict_saturation(self, prompts: list[str]) -> list[float]:
def _predict_saturation(self, prompts: List[str]) -> List[float]:
return [
DetectJailbreak._rescale(
s,
Expand All @@ -230,9 +230,9 @@ def _predict_saturation(self, prompts: list[str]) -> list[float]:

def predict_jailbreak(
self,
prompts: list[str],
prompts: List[str],
reduction_function: Optional[Callable] = max,
) -> Union[list[float], list[dict]]:
) -> Union[List[float], List[dict]]:
if isinstance(prompts, str):
print("WARN: predict_jailbreak should be called with a list of strings.")
prompts = [prompts, ]
Expand All @@ -256,7 +256,7 @@ def predict_jailbreak(

def validate(
self,
value: Union[str, list[str]],
value: Union[str, List[str]],
metadata: Optional[dict] = None,
) -> ValidationResult:
"""Validates that will return a failure if the value is a jailbreak attempt.
Expand Down
10 changes: 5 additions & 5 deletions validator/models.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from typing import Optional, Union
from typing import List, Tuple, Optional, Union

import numpy
import torch
Expand All @@ -8,7 +8,7 @@


def string_to_one_hot_tensor(
text: Union[str, list[str], tuple[str]],
text: Union[str, List[str], Tuple[str]],
max_length: int = 2048,
left_truncate: bool = True,
) -> torch.Tensor:
Expand Down Expand Up @@ -71,7 +71,7 @@ def get_current_device(self):

def forward(
self,
x: Union[str, list[str], numpy.ndarray, torch.Tensor]
x: Union[str, List[str], numpy.ndarray, torch.Tensor]
) -> torch.Tensor:
if isinstance(x, str) or isinstance(x, list) or isinstance(x, tuple):
x = string_to_one_hot_tensor(x).to(self.get_current_device())
Expand Down Expand Up @@ -113,7 +113,7 @@ def get_current_device(self):

def forward(
self,
x: Union[str, list[str], numpy.ndarray, torch.Tensor],
x: Union[str, List[str], numpy.ndarray, torch.Tensor],
y: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
Expand Down Expand Up @@ -209,5 +209,5 @@ def __init__(
device=device,
)

def __call__(self, text: Union[str, list[str]]) -> list[dict]:
def __call__(self, text: Union[str, List[str]]) -> List[dict]:
return self.pipe(text)
Loading