Skip to content

This is the official repository for the paper "Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications"

License

Notifications You must be signed in to change notification settings

gtfintechlab/WorldCentralBanks

Repository files navigation

Words That Unite The World: A Unified Framework for Deciphering Central‑Bank Communications Globally

Authors

Role Contributors
Equal‑first (*) Agam Shah*, Siddhant Sukhani*, Huzaifa Pardawala*
Core contributors (†) Saketh Budideti†, Riya Bhadani†, Rudra Gopal†, Siddhartha Somani†, Michael Galarnyk†, Rutwik Routu†, Soungmin Lee†
Additional contributors Akshar Ravichandran, Eric Kim, Pranav Aluru, Joshua Zhang, Sebastian Jaskowski, Veer Guda, Meghaj Tarte, Liqin Ye, Spencer Gosden, Rachel Yuh, Arnav Hiray, Sloka Chava, Sahasra Chava, Dylan Kelly, Aiden Chiang, Harsit Mittal, Sudheer Chava
  • 🐝 Georgia Institute of Technology
    Contact: {ashah482, ssukhani3, hpardawala3}@gatech.edu
    Links:

Note – * denotes equal first authors, † denotes core contributors.


Paper & Website

  • 🌐 Explore interactive visualisations on the WCB website

World map of participating central banks

Dataset Overview

Dataset Value
Central Banks 25
Years 1996 – 2024
Scraped Sentences 380,200
Annotated Sentences 25,000
Total Words 10,289,163
Corpus Size (tokens) 2,661,400
Sentences / Year* 13,110.34
Words / Sentence* 27.06

Model Information

Models Value
Pre‑trained Language Models 7
Large Language Models 9
Best Stance Model* RoBERTa‑Large (0.740)
Best Temporal Model* RoBERTa‑Base (0.868)
Best Uncertainty Model* RoBERTa‑Large (0.846)
Benchmarking Experiments 15,075
Few‑shot
Few‑shot + Ann. Guide

Annotation Details

Annotations Value
Annotators 104
Annotation Guides 26
Annotation Steps 6
Tasks
Stance Detection Hawkish, Dovish, Neutral, Irrelevant
Temporal Classification (Not) Forward‑looking
Uncertainty Estimation (Un)certain

Figure 1. A summary of the World Central Bank (WCB) dataset and experiments.
We systematically scrape, clean, and analyze 1996 – 2024 communications from 25 central banks at the sentence level, yielding 380,200 sentences (avg. 27.06 words/sentence). An annotated subset of 25,000 sentences spans three tasks (Stance Detection, Temporal Classification, and uncertainty Estimation) using comprehensive individual annotation guides and detailed instructions for annotation. We benchmark seven PLMs and eight LLMs on these tasks, under a bank-specific (1,000 bank-specific annotated sentences) and global setup (25,000 annotated sentences). The performance of the General (All-Banks) Setup model for each task is showcased in the figure.

In these tables, * represents that it is an average.


Abstract

Central banks around the world play a crucial role in maintaining economic stability. Deciphering policy implications in their communications is essential, especially as misinterpretations can disproportionately impact vulnerable populations. To address this, we introduce the World Central Banks (WCB) dataset, the most comprehensive monetary policy corpus to date, comprising over 380k sentences from 25 central banks across diverse geographic regions, spanning 28 years of historical data. After uniformly sampling 1k sentences per bank (25k total) across all available years, we annotate and review each sentence using dual annotators, disagreement resolutions, and secondary expert reviews. We define three tasks: Stance Detection, Temporal Classification, and Uncertainty Estimation, with each sentence annotated for all three. We benchmark seven Pretrained Language Models (PLMs) and nine Large Language Models (LLMs) (Zero-Shot, Few-Shot, and with annotation guide) over 15,075 experiments. We find that a model trained on aggregated data across banks significantly surpasses a model trained on an individual bank's data, confirming the principle "the whole is greater than the sum of its parts". Additionally, rigorous human evaluations, error analyses, and predictive tasks validate our framework's economic utility. Our artifacts are accessible through the WCB Homepage, HuggingFace, and GitHub under the CC-BY-NC-SA 4.0 license.


Repository Layout

Path Description
cleaned_data/ Markdown and txt files with cleaned data
configs/ configs for the LLM experiments
croissant_files/ croissant files for the 25k annotated sentences and the full corpus (380k sentences)
final_data/ csv files with annotated sentences
llm_inference_outputs/ files containing outputs of the LLMs for different experiments
llm_inference_logs/ logs for the LLM experiments
raw_data/ Raw documents (PDF, txt, docx)
resources/ Figures & logos for the paper/README
sanitized_data/ txt files with only sentences
src/llm_benchmarking/ LLM experimentation pipeline
src/plm_benchmarking/ Pre‑trained encoder benchmarks
src/additional_experiments/ Scripts for generating synthetic meeting minutes, performing ablation studies, etc.
utils/ Utility scripts for logging and other helper functions.
master_file_metadata.json Metadata file containing detailed information about the dataset (JSON).
master_file_metadata.xlsx Metadata file containing detailed information about the dataset (Excel).

Format of Released Data

Released Splits

  • Per‑bank datasets: gtfintechlab/<bank_slug>, 3 seeds each.
  • Aggregated dataset: gtfintechlab/all_annotated_sentences_25000.

Metadata

The master_file_metadata.json in the root directory contains the metadata for the entire dataset. The entries are formatted as follows:

    { 
      "central_bank_name": { 
        "year": { 
          "document_key": {
            "release_date": "DD-MM-YYYY",
            "start_date": "DD-MM-YYYY",
            "end_date": "DD-MM-YYYY",
            "minutes_link": "URL to the source document",
            "cleaned_document_name": "Filename of cleaned document",
            "original_document_name": "Filename of original document",
            "sentences": [
              "First sentence from the document.",
              "Second sentence from the document.",
              "..."
            ]
          }
        }
      }
    }


Environment Setup

Tested on Python 3.9 – 3.11.
GPU support: CUDA 11.8 (optional).

  1. Clone and create a virtual environment
git clone https://github.com/gtfintechlab/WorldCentralBanks.git
cd WorldCentralBanks
python -m venv .venv              # or: conda create -n wcb python=3.10
source .venv/bin/activate         # # conda activate wcb
  1. Install Dependencies
pip install -r requirements.txt
  1. Configure API Keys

Copy the sample file:

cp .env.example .env

Open .env and paste your credentials

HF_TOKEN= # read or read‑write scope

TOGETHERAI_API_KEY=

OPENAI_API_KEY=

GEMINI_API_KEY=


Code - getting started

Note: Ensure your environment is correctly set up before running the scripts.

Bank Dictionary: Mapping Dataset Keys to Official Central Bank Names

  {
    "bank_negara_malaysia": "Bank Negara Malaysia",
    "bank_of_canada": "Bank of Canada",
    "bank_of_the_republic_colombia": "Bank of the Republic (Colombia)",
    "bank_of_england": "Bank of England",
    "bank_of_israel": "Bank of Israel",
    "bank_of_japan": "Bank of Japan",
    "bank_of_korea": "Bank of Korea",
    "bank_of_mexico": "Bank of Mexico",
    "central_bank_of_the_philippines": "Central Bank of the Philippines",
    "bank_of_thailand": "Bank of Thailand",
    "central_bank_of_brazil": "Central Bank of Brazil",
    "central_bank_of_chile": "Central Bank of Chile",
    "central_bank_of_egypt": "Central Bank of Egypt",
    "central_bank_of_the_russian_federation": "Central Bank of the Russian Federation",
    "central_bank_republic_of_turkey": "Central Bank of Turkey",
    "central_bank_of_china_taiwan": "Central Bank of China (Taiwan)",
    "central_reserve_bank_of_peru": "Central Reserve Bank of Peru",
    "european_central_bank": "European Central Bank",
    "federal_reserve_system": "Federal Reserve System",
    "monetary_authority_of_singapore": "Monetary Authority of Singapore",
    "national_bank_of_poland": "National Bank of Poland",
    "peoples_bank_of_china": "People's Bank of China",
    "reserve_bank_of_india": "Reserve Bank of India",
    "reserve_bank_of_australia": "Reserve Bank of Australia",
    "swiss_national_bank": "Swiss National Bank"
}

Dataset Availability

Access the Dataset on Hugging Face

Access the 25k annotated sentences dataset on Hugging Face
Hugging Face Logo

The World Central Bank (WCB) dataset is available on Hugging Face. It includes:

  • Individual central banks' datasets
  • Aggregated dataset (25k annotated sentences, 1k per bank)
  • Full corpus (380,200 sentences without splits)

Loading the Full Corpus (380k Sentences)

from datasets import load_dataset

dataset = load_dataset("gtfintechlab/WCB_380k_sentences")

Loading the Aggregated Dataset (25k Annotated Sentences)

from datasets import load_dataset

dataset = load_dataset("gtfintechlab/all_annotated_sentences_25000", '{SEED}')

Loading a Specific Central Bank's Dataset

from datasets import load_dataset

dataset = load_dataset("gtfintechlab/{bank_name}", '{SEED}')

Available Seeds

  • 5768
  • 78516
  • 944601

Croissant Files

  • Full corpus (380k sentences): root/croissant_files/croissant_WCB_380k_sentences.json
  • Annotated dataset (25k sentences): root/croissant_files/croissant_all_annotated_sentences_25000.json

Loading Models from Hugging Face

Using Pre-Trained Models for WCB Tasks

Use bank="WCB" for the best-performing general model, or any key from bank_map for a bank‑specific model.

Below are examples for all three tasks:


1. Stance Detection

Model Name Pattern: model_<bank>_stance_label
Labels: Hawkish, Dovish, Neutral, Irrelevant

Intended Use
This model is designed for researchers and practitioners working on subjective text classification, particularly within financial contexts. It assesses the Stance attribute, aiding in the analysis of subjective content in financial communications.

How to Use

from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

# Load tokenizer, model, and configuration
tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/model_{bank}_stance_label", do_lower_case=True, do_basic_tokenize=True)
model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/model_{bank}_stance_label", num_labels=4)
config = AutoConfig.from_pretrained("gtfintechlab/model_{bank}_stance_label")

# Initialize text classification pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")

# Classify Stance
sentences = [
  "[Sentence 1]",
  "[Sentence 2]"
]
results = classifier(sentences, batch_size=128, truncation="only_first")
print(results)

Label Interpretation

  • LABEL_0: Neutral; neither hawkish nor dovish, or both sentiments present.
  • LABEL_1: Hawkish; supports contractionary monetary policy.
  • LABEL_2: Dovish; supports expansionary monetary policy.
  • LABEL_3: Irrelevant; unrelated to monetary policy.

2. Temporal Classification

Model Name Pattern: model_<bank>_time_label
Labels: Forward-looking, Not Forward-looking

Intended Use
This model is designed for researchers and practitioners working on subjective text classification, particularly within financial contexts. It assesses the Temporal Classification attribute, aiding in the analysis of subjective content in financial communications.

How to Use

from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

# Load tokenizer, model, and configuration
tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/model_{bank}_time_label", do_lower_case=True, do_basic_tokenize=True)
model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/model_{bank}_time_label", num_labels=2)
config = AutoConfig.from_pretrained("gtfintechlab/model_{bank}_time_label")

# Initialize text classification pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")

# Classify Temporal Classification
sentences = [
  "[Sentence 1]",
  "[Sentence 2]"
]
results = classifier(sentences, batch_size=128, truncation="only_first")
print(results)

Label Interpretation

  • LABEL_0: Forward-looking; discusses future economic events or decisions.
  • LABEL_1: Not Forward-looking; discusses past or current economic events or decisions.

3. Uncertainty Estimation

Model Name Pattern: model_<bank>_certainty_label
Labels: Certain, Uncertain

How to Use

from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig

# Load tokenizer, model, and configuration
tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/model_{bank}_certainty_label", do_lower_case=True, do_basic_tokenize=True)
model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/model_{bank}_certainty_label", num_labels=2)
config = AutoConfig.from_pretrained("gtfintechlab/model_{bank}_certainty_label")

# Initialize text classification pipeline
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")

# Classify Uncertainty Estimation
sentences = [
  "[Sentence 1]",
  "[Sentence 2]"
]
results = classifier(sentences, batch_size=128, truncation="only_first")
print(results)

Label Interpretation

  • LABEL_0: Certain; presents information definitively.
  • LABEL_1: Uncertain; presents information with speculation, possibility, or doubt.

Running the Benchmarking Scripts

LLM Benchmarking

Anthropic Logo   DeepSeek Logo   FinMA Logo   OpenAI Logo   Gemini Logo   Llama Logo   BERT Logo   Qwen Logo

All commands are executed from src/llm_benchmarking:

Run every bank × 3 seeds for a given prompt format:

./run_all.sh <prompt_format>

prompt_format ∈ [guide (with annotation guides), few_shot (few‑shot examples), no_guide (zero‑shot)]

Custom experiment

Edit root/src/llm_benchmarking/template.yaml (temperature, max_tokens, feature, etc.), then:

python inference.py --config template.yaml

FinMA inference

python finma_inference.py --config template.yaml

Pre-Trained Language Models Benchmarking

Aggregated‑dataset run

Run this from the root/src/plm_benchmarking;

python general_setup_run.py

Bank‑specific setup

Run this from the root/src/plm_benchmarking;

python bank_specific_setup_run.py

Results

Table 1.  F1 scores for Stance Detection in the General Setup (Hawkish / Dovish / Neutral / Irrelevant)

Standard deviations in parentheses.
Best‑performing PLM cells are in bold; best‑performing LLM cells are in italics.

Model abbreviation key – click to expand
Abbrev Model (checkpoint) Category Params
MBB ModernBERT‑base PLM – Base 150 M
BB bert‑base‑uncased PLM – Base 110 M
FB finbert‑pretrain PLM – Base 110 M
RBB roberta‑base PLM – Base 125 M
MBL ModernBERT‑large PLM – Large 396 M
BL bert‑large PLM – Large 340 M
RBL roberta‑large PLM – Large 355 M
FM finma‑7b‑full LLM (Closed) 7 B
Gem gemini‑2.0‑flash LLM (Closed)
4o gpt‑4o‑2024‑08‑06 LLM (Closed)
4.1 gpt‑4.1‑2025‑04‑14 LLM (Closed)
4.1M gpt‑4.1‑mini‑2025‑04‑14 LLM (Closed)
DS DeepSeek‑V3‑0324 LLM (Open) 671 B
Qwen Qwen2.5‑72B‑Instruct‑Turbo LLM (Open) 72.7 B
L3 Llama‑3‑70b‑chat‑hf LLM (Open) 70 B
L4S Llama‑4‑Scout‑17B‑16E‑Instruct LLM (Open) 405 B
Central Banks' abbreviation key – click to expand
Abbrev Full Name
FOMC Federal Open Market Committee (USA)
PBoC People's Bank of China
BoJ Bank of Japan
BoE Bank of England
SNB Swiss National Bank
BCB Central Bank of Brazil
RBI Reserve Bank of India
ECB European Central Bank
CBR Central Bank of the Russian Federation
CBCT Central Bank of China (Taiwan)
MAS Monetary Authority of Singapore
BoK Bank of Korea (South Korea)
RBA Reserve Bank of Australia
BoI Bank of Israel
BoC Bank of Canada
BdeM Bank of Mexico
NBP Narodowy Bank Polski (Poland)
CBRT Central Bank of Turkey
BoT Bank of Thailand
CBE Central Bank of Egypt
BNM Bank Negara Malaysia
BSP Central Bank of the Philippines
CBoC Central Bank of Chile
BCRP Central Reserve Bank of Peru
BanRep Bank of the Republic (Colombia)
Bank MBB BB FB RBB MBL BL RBL Gem 4o 4.1m 4.1 DS Qwen FM L3 L4S
BCB .678 (.039) .635 (.057) .609 (.008) .655 (.018) .673 (.016) .636 (.014) .634 (.050) .528 (.027) .498 (.017) .462 (.020) .504 (.017) .613 (.021) .525 (.028) .350 (.034) .503 (.021) .589 (.049)
BCRP .788 (.021) .781 (.008) .764 (.009) .779 (.028) .798 (.013) .801 (.024) .821 (.015) .675 (.004) .628 (.008) .634 (.035) .665 (.004) .666 (.010) .503 (.062) .301 (.031) .641 (.014) .620 (.043)
BNM .626 (.029) .629 (.017) .653 (.023) .601 (.012) .630 (.041) .644 (.013) .640 (.009) .409 (.006) .443 (.027) .430 (.007) .409 (.025) .475 (.013) .333 (.026) .160 (.033) .567 (.025) .435 (.005)
BSP .741 (.015) .697 (.020) .707 (.028) .749 (.010) .724 (.049) .698 (.025) .784 (.017) .424 (.042) .420 (.069) .451 (.039) .514 (.076) .534 (.029) .380 (.015) .245 (.027) .584 (.042) .500 (.035)
BanRep .685 (.031) .638 (.022) .679 (.017) .673 (.013) .702 (.001) .650 (.017) .701 (.013) .515 (.021) .455 (.031) .520 (.036) .553 (.015) .570 (.037) .450 (.023) .230 (.033) .573 (.038) .423 (.033)
BoC .722 (.033) .740 (.006) .750 (.010) .745 (.032) .721 (.004) .755 (.005) .785 (.010) .629 (.069) .647 (.052) .641 (.052) .657 (.028) .657 (.026) .524 (.038) .264 (.029) .669 (.043) .644 (.024)
BoE .686 (.031) .706 (.056) .734 (.052) .769 (.019) .735 (.039) .755 (.009) .785 (.034) .543 (.026) .524 (.031) .537 (.048) .602 (.031) .543 (.070) .396 (.021) .129 (.026) .661 (.044) .518 (.045)
BoI .652 (.003) .642 (.023) .616 (.019) .614 (.008) .658 (.023) .628 (.033) .689 (.017) .474 (.011) .460 (.005) .433 (.032) .526 (.013) .482 (.001) .329 (.025) .085 (.011) .594 (.023) .430 (.008)
BoJ .691 (.020) .662 (.044) .629 (.047) .660 (.020) .708 (.042) .683 (.033) .702 (.025) .524 (.010) .545 (.021) .465 (.028) .565 (.008) .498 (.009) .406 (.040) .157 (.033) .574 (.027) .507 (.026)
BoK .723 (.056) .664 (.009) .679 (.011) .706 (.018) .740 (.009) .700 (.028) .755 (.019) .646 (.040) .648 (.030) .594 (.066) .678 (.016) .629 (.016) .466 (.076) .181 (.031) .632 (.032) .592 (.047)
BdeM .696 (.020) .694 (.048) .642 (.032) .724 (.023) .716 (.008) .684 (.026) .735 (.030) .596 (.009) .602 (.024) .509 (.023) .626 (.016) .669 (.034) .447 (.047) .118 (.018) .642 (.012) .552 (.013)
BoT .717 (.046) .696 (.064) .723 (.021) .735 (.057) .733 (.071) .728 (.006) .741 (.017) .547 (.004) .549 (.032) .551 (.039) .573 (.012) .581 (.029) .484 (.038) .258 (.026) .596 (.009) .577 (.030)
CBCT .641 (.049) .637 (.031) .635 (.029) .667 (.015) .616 (.035) .678 (.032) .688 (.024) .451 (.044) .474 (.044) .474 (.031) .485 (.026) .522 (.022) .388 (.049) .180 (.037) .556 (.015) .475 (.051)
CBE .773 (.027) .783 (.026) .790 (.004) .810 (.016) .822 (.015) .788 (.029) .836 (.014) .629 (.037) .672 (.036) .581 (.045) .648 (.036) .636 (.007) .352 (.056) .142 (.014) .702 (.021) .594 (.024)
CBR .763 (.031) .754 (.017) .750 (.020) .798 (.032) .811 (.023) .779 (.022) .835 (.011) .759 (.015) .749 (.027) .693 (.026) .701 (.049) .794 (.028) .573 (.035) .146 (.022) .772 (.029) .665 (.013)
CBRT .717 (.015) .743 (.016) .724 (.012) .746 (.011) .746 (.014) .724 (.032) .762 (.027) .495 (.006) .421 (.014) .424 (.018) .475 (.015) .539 (.030) .277 (.006) .133 (.020) .653 (.036) .416 (.032)
CBoC .760 (.048) .747 (.006) .743 (.054) .779 (.049) .792 (.043) .793 (.058) .799 (.037) .668 (.032) .604 (.027) .605 (.033) .678 (.057) .676 (.038) .559 (.072) .223 (.040) .685 (.019) .539 (.071)
ECB .707 (.040) .699 (.048) .668 (.030) .724 (.050) .724 (.014) .713 (.022) .755 (.024) .638 (.023) .599 (.019) .610 (.038) .660 (.021) .637 (.005) .548 (.017) .206 (.052) .613 (.020) .595 (.016)
FOMC .671 (.029) .674 (.035) .675 (.046) .747 (.020) .732 (.037) .685 (.044) .749 (.047) .572 (.021) .584 (.025) .564 (.018) .649 (.023) .653 (.023) .512 (.023) .170 (.025) .599 (.012) .498 (.015)
MAS .656 (.049) .681 (.043) .666 (.005) .666 (.066) .698 (.042) .680 (.049) .703 (.033) .553 (.046) .581 (.026) .588 (.034) .569 (.015) .689 (.041) .540 (.026) .347 (.024) .638 (.035) .646 (.023)
NBP .685 (.016) .690 (.013) .705 (.026) .731 (.013) .725 (.009) .697 (.010) .695 (.020) .637 (.015) .631 (.043) .614 (.063) .665 (.031) .660 (.002) .508 (.028) .118 (.017) .618 (.035) .597 (.015)
PBoC .791 (.033) .763 (.008) .742 (.046) .787 (.026) .813 (.014) .793 (.007) .786 (.017) .492 (.046) .559 (.037) .531 (.026) .535 (.033) .592 (.037) .379 (.017) .128 (.018) .613 (.033) .446 (.024)
RBA .685 (.023) .681 (.019) .682 (.027) .672 (.015) .707 (.029) .695 (.024) .741 (.028) .531 (.049) .478 (.079) .483 (.058) .553 (.074) .537 (.055) .358 (.049) .133 (.020) .614 (.034) .495 (.057)
RBI .604 (.037) .649 (.035) .653 (.041) .628 (.034) .633 (.032) .655 (.039) .668 (.044) .489 (.025) .519 (.041) .509 (.026) .495 (.027) .542 (.016) .431 (.008) .231 (.058) .581 (.030) .557 (.032)
SNB .692 (.017) .685 (.028) .653 (.016) .685 (.009) .725 (.018) .698 (.030) .713 (.020) .635 (.003) .601 (.015) .640 (.037) .652 (.016) .643 (.024) .554 (.029) .252 (.008) .612 (.014) .607 (.051)
Average .702 (.030) .695 (.028) .691 (.025) .714 (.025) .723 (.026) .710 (.025) .740 (.024) .562 (.085) .556 (.084) .542 (.075) .586 (.078) .601 (.075) .449 (.083) .196 (.071) .620 (.053) .541 (.074)

For more results and a comprehensive leaderboard, visit the WCB website.


License

The WCB dataset is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA 4.0) license, which allows others to share, copy, distribute, and transmit the work, as well as to adapt the work, provided that appropriate credit is given, a link to the license is provided, and any changes made are indicated.

Citation: If you use our open-source dataset or refer to our results, please cite our paper:

@article{WCBShahSukhaniPardawala,
  title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
  author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et. al},
  year={2025}
}

Issue Reporting

For any questions or concerns, please open a GitHub issue or email: huzaifahp7@gmail.com, ashah482@gatech.edu, siddhantsukhani5@gmail.com

About

This is the official repository for the paper "Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •