Skip to content

GCI96 avoidIterativeMatrixOperations #Python #DLG #Build #68

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Added

- Add rule GCI96 avoidIterativeMatrixOperations

### Changed

- compatibility updates for SonarQube 25.5.0
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,8 @@ public class PythonRuleRepository implements RulesDefinition, PythonCustomRuleRe
AvoidFullSQLRequest.class,
AvoidListComprehensionInIterations.class,
DetectUnoptimizedImageFormat.class,
AvoidMultipleIfElseStatementCheck.class
AvoidMultipleIfElseStatementCheck.class,
AvoidIterativeMatrixOperations.class
);

public static final String LANGUAGE = "py";
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,167 @@
/*
* creedengo - Python language - Provides rules to reduce the environmental footprint of your Python programs
* Copyright © 2024 Green Code Initiative (https://green-code-initiative.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package org.greencodeinitiative.creedengo.python.checks;


import org.sonar.check.Rule;
import org.sonar.plugins.python.api.PythonSubscriptionCheck;
import org.sonar.plugins.python.api.SubscriptionContext;
import org.sonar.plugins.python.api.tree.Expression;
import org.sonar.plugins.python.api.tree.BinaryExpression;
import org.sonar.plugins.python.api.tree.CompoundAssignmentStatement;
import org.sonar.plugins.python.api.tree.ForStatement;
import org.sonar.plugins.python.api.tree.Tree;
import org.sonar.plugins.python.api.tree.Statement;
import org.sonar.plugins.python.api.tree.SubscriptionExpression;
import org.sonar.plugins.python.api.tree.AssignmentStatement;

import java.util.List;

@Rule(key = "GCI96")

public class AvoidIterativeMatrixOperations extends PythonSubscriptionCheck {

private static final String DESCRIPTION = "Avoid iterative matrix operations, use numpy dot or outer function instead";

@Override
public void initialize(Context context) {
context.registerSyntaxNodeConsumer(Tree.Kind.FOR_STMT, this::visitForStatement);
}

private void visitForStatement(SubscriptionContext context) {
ForStatement forStatement = (ForStatement) context.syntaxNode();
if (isDotProduct(forStatement) || isOuterProduct(forStatement) || isMatrixDotProduct(forStatement)) {
context.addIssue(forStatement.firstToken(), DESCRIPTION);
}
}


private boolean isDotProduct(ForStatement forStatement) {
List<Statement> statements = forStatement.body().statements();
for (Statement stmt : statements) {
if (stmt.is(Tree.Kind.COMPOUND_ASSIGNMENT)) {
CompoundAssignmentStatement assign = (CompoundAssignmentStatement) stmt;
Expression lhsExpression = assign.lhsExpression();
if (assign.compoundAssignmentToken().value().equals("+=")
&& isMultiplicationOfIndexedElements(assign.rhsExpression(),false)
&& !isDoubleSubscription(lhsExpression)) {
System.out.println("Dot product found");
return true;
}
}
}
return false;
}

private boolean isOuterProduct(ForStatement outerForStatement) {
List<Statement> outerStatements = outerForStatement.body().statements();
for (Statement outerStatement : outerStatements) {
if (outerStatement.is(Tree.Kind.FOR_STMT)) {
ForStatement innerForStatement = (ForStatement) outerStatement;
List<Statement> innerStatements = innerForStatement.body().statements();
for (Statement innermostStatement : innerStatements) {
if (isOuterProductOperation(innermostStatement)) {
System.out.println("Outer product found");
return true;
}
}
}
}
return false;

}
private boolean isOuterProductOperation(Statement statement) {
if (statement.is(Tree.Kind.ASSIGNMENT_STMT)) {
AssignmentStatement assignmentStmt = (AssignmentStatement) statement;
Expression lhsExpression = assignmentStmt.lhsExpressions().get(0).expressions().get(0);

if (isDoubleSubscription(lhsExpression)) {
Expression rhsExpression = assignmentStmt.assignedValue();
return containsMultiplicationOfIndexedElements(rhsExpression, false);
}
}
return false;
}

private boolean containsMultiplicationOfIndexedElements(Expression expr, boolean matrixOps) {
if (isMultiplicationOfIndexedElements(expr, matrixOps)) {
return true;
}

if (expr instanceof BinaryExpression) {
BinaryExpression bin = (BinaryExpression) expr;
return containsMultiplicationOfIndexedElements(bin.leftOperand(), matrixOps)
|| containsMultiplicationOfIndexedElements(bin.rightOperand(), matrixOps);
}

return false;
}

private boolean isMatrixDotProduct(ForStatement outerForStatement) {
List<Statement> outerStatements = outerForStatement.body().statements();
for (Statement outerStatement : outerStatements) {
if (outerStatement.is(Tree.Kind.FOR_STMT)) {
ForStatement middleForStatement = (ForStatement) outerStatement;
List<Statement> middleStatements = middleForStatement.body().statements();
for (Statement middleStatement : middleStatements) {
if (middleStatement.is(Tree.Kind.FOR_STMT)) {
ForStatement innerForStatement = (ForStatement) middleStatement;
List<Statement> innerStatements = innerForStatement.body().statements();
for (Statement innermostStatement : innerStatements) {
if (isMatrixDotProductOperation(innermostStatement)) {
System.out.println("Matrix dot product found");
return true;
}
}
}
}
}
}
return false;
}

private boolean isMatrixDotProductOperation(Statement statement) {
if (statement.is(Tree.Kind.COMPOUND_ASSIGNMENT)) {
CompoundAssignmentStatement compoundStatement = (CompoundAssignmentStatement) statement;
String operator = compoundStatement.compoundAssignmentToken().value();
if (operator.equals("+=")) {
if (isDoubleSubscription(compoundStatement.lhsExpression())) {
Expression rhsExpression = compoundStatement.rhsExpression();
return isMultiplicationOfIndexedElements(rhsExpression, true);
}
}
}
return false;
}

private boolean isMultiplicationOfIndexedElements(Expression expr, boolean matrixOps) {
if (expr.is(Tree.Kind.MULTIPLICATION)) {
BinaryExpression bin = (BinaryExpression) expr;
if (matrixOps) {
return isDoubleSubscription(bin.leftOperand()) && isDoubleSubscription(bin.rightOperand());
} else {
return bin.leftOperand().is(Tree.Kind.SUBSCRIPTION) && bin.rightOperand().is(Tree.Kind.SUBSCRIPTION);
}
}
return false;
}

private boolean isDoubleSubscription(Expression expr) {
return expr.is(Tree.Kind.SUBSCRIPTION) && ((SubscriptionExpression) expr).object().is(Tree.Kind.SUBSCRIPTION);
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
/*
* creedengo - Python language - Provides rules to reduce the environmental footprint of your Python programs
* Copyright © 2024 Green Code Initiative (https://green-code-initiative.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
package org.greencodeinitiative.creedengo.python.checks;

import org.junit.Test;
import org.sonar.python.checks.utils.PythonCheckVerifier;

public class AvoidIterativeMatrixOperationsTest {

@Test
public void test() {
PythonCheckVerifier.verify("src/test/resources/checks/avoidIterativeMatrixOperations.py", new AvoidIterativeMatrixOperations());
}
}
121 changes: 121 additions & 0 deletions src/test/resources/checks/avoidIterativeMatrixOperations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
import numpy as np

# Test 1: Simple dot product
a = [1, 2, 3, 4]
b = [2, 3, 4, 5]

dot = 0
for i in range(len(a)): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
dot += a[i] * b[i]

dot_numpy = np.dot(a, b) # Compliant

# Test 2: Matrix dot product
A = [[1, 2], [3, 4]]
B = [[5, 6], [7, 8]]

def iterative_matrix_product(A, B):
results = [[0 for _ in range(len(B[0]))] for _ in range(len(A))]

for i in range(len(A)): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
for j in range(len(B[0])):
for k in range(len(B)):
results[i][j] += A[i][k] * B[k][j]

return results

results = iterative_matrix_product(A, B)

results_numpy = np.dot(A, B) # Compliant

# Test 3: Outer product
x = np.random.rand(100)
y = np.random.rand(100)

o = np.zeros((len(x), len(y)))
for i in range(len(x)): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
for j in range(len(y)):
o[i][j] = x[i] * y[j]

outer_numpy = np.outer(x, y) # Compliant

# Test 4: Dot product with different variable names
vec1 = [1, 2, 3]
vec2 = [4, 5, 6]
res = 0
for idx in range(3): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
res += vec1[idx] * vec2[idx]

# Test 5: False positive - scalar addition in loop
total = 0
for i in range(10):
total += i # Compliant

# Test 6: False positive - unrelated list indexing
c = [10, 20, 30]
d = [5, 6, 7]
e = []
for i in range(len(c)):
e.append(c[i] + d[i]) # Compliant

# Test 7: Dot product in list comprehension (should be compliant)
dp = sum([a[i] * b[i] for i in range(len(a))]) # Compliant

# Test 8: Double subscription but not matrix op
m = [[1, 2], [3, 4]]
n = [[5, 6], [7, 8]]
for i in range(len(m)):
for j in range(len(n)):
print(m[i][j] + n[i][j]) # Compliant

# Test 9: Outer product with extra operation
x = [1, 2]
y = [3, 4]
result = [[0]*len(y) for _ in range(len(x))]
for i in range(len(x)): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
for j in range(len(y)):
result[i][j] = x[i] * y[j] + 1

# Test 9: Outer product with extra operation
x = [1, 2]
y = [3, 4]
result = [[0]*len(y) for _ in range(len(x))]
for i in range(len(x)): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
for j in range(len(y)):
result[i][j] = x[i] * y[j] -10

# Test 10: 3-level nested matrix product with aliases
X = [[1, 2], [3, 4]]
Y = [[5, 6], [7, 8]]
Z = [[0, 0], [0, 0]]
for r in range(2): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
for c in range(2):
for t in range(2):
Z[r][c] += X[r][t] * Y[t][c]

# Test 11: False positive - nested loops without multiplication
total = 0
for i in range(10):
for j in range(5):
total += i + j # Compliant

# Test 12: Matrix dot with transpose
M1 = [[1, 2], [3, 4]]
M2 = [[5, 7], [6, 8]]
out = [[0 for _ in range(len(M2))] for _ in range(len(M1))]
for i in range(len(M1)): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
for j in range(len(M2)):
for k in range(len(M1[0])):
out[i][j] += M1[i][k] * M2[j][k] # Transposed multiplication

# Test 13: Outer product with offset indexing (still counts)
x = [1, 2]
y = [3, 4]
res = [[0, 0], [0, 0]]
for i in range(2): # Noncompliant {{Avoid iterative matrix operations, use numpy dot or outer function instead}}
for j in range(2):
res[i][j] = x[i] * y[j]


# Test 15: Matrix dot using zip (compliant)
res = sum(i * j for i, j in zip(a, b)) # Compliant