This repository contains pipelines for processing airborne and UAV-based LiDAR data, focusing on ground and vegetation classification using both traditional and deep learning methods.
PyTorch Lightning - a lightweight PyTorch wrapper for high-performance AI research. Think of it as a framework for organizing your PyTorch code.
Hydra - a framework for elegantly configuring complex applications. The key feature is the ability to dynamically create a hierarchical configuration by composition and override it through config files and the command line.
The directory structure of new project looks like this:
├── .github <- Github Actions workflows
│
├── configs <- Hydra configs
│ ├── callbacks <- Callbacks configs
│ ├── data <- Data configs
│ ├── debug <- Debugging configs
│ ├── experiment <- Experiment configs
│ ├── extras <- Extra utilities configs
│ ├── hparams_search <- Hyperparameter search configs
│ ├── hydra <- Hydra configs
│ ├── local <- Local configs
│ ├── logger <- Logger configs
│ ├── model <- Model configs
│ ├── paths <- Project paths configs
│ ├── trainer <- Trainer configs
│ │
│ ├── eval.yaml <- Main config for evaluation
│ └── train.yaml <- Main config for training
│
├── data <- Project data
│
├── logs <- Logs generated by hydra and lightning loggers
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description,
│ e.g. `1.0-jqp-initial-data-exploration.ipynb`.
│
├── scripts <- Shell scripts
│
├── src <- Source code
│ ├── data <- Data scripts
│ ├── models <- Model scripts
│ ├── utils <- Utility scripts
│ │
│ ├── eval.py <- Run evaluation
│ └── train.py <- Run training
│
├── tests <- Tests of any kind
│
├── .env.example <- Example of file for storing private environment variables
├── .gitignore <- List of files ignored by git
├── .pre-commit-config.yaml <- Configuration of pre-commit hooks for code formatting
├── .project-root <- File for inferring the position of project root directory
├── environment.yaml <- File for installing conda environment
├── Makefile <- Makefile with commands like `make train` or `make test`
├── pyproject.toml <- Configuration options for testing and linting
├── requirements.txt <- File for installing python dependencies
├── setup.py <- File for installing project as a package
└── README.md
# clone project
git clone https://github.com/giammabria/Airborne-LiDAR-Classification
cd airborne-lidar-classification
# [OPTIONAL] create conda environment
conda create -n myenv python=3.10
conda activate myenv
# install pytorch according to instructions
# https://pytorch.org/get-started/
# install requirements
pip install -r requirements.txt
This project was built using Lightning-Hydra template. This work builds upon Myria3D, a deep learning library for aerial LiDAR semantic segmentation developed by IGN (French National Mapping Agency).
@misc{gaydon2022myria3d,
title={Myria3D: Deep Learning for the Semantic Segmentation of Aerial Lidar Point Clouds},
url={https://github.com/IGNF/myria3d},
author={Charles Gaydon},
year={2022},
note={IGN (French Mapping Agency)}
}
For production-ready deep learning workflows, see the full Myria3D repository.