Skip to content

kleidiai: add support for get_rows #14676

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions ggml/src/ggml-cpu/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -494,9 +494,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)

# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.9.0")
set(KLEIDIAI_COMMIT_TAG "v1.11.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "2a8e1bb55d201557553545536489a017")
set(KLEIDIAI_ARCHIVE_MD5 "3fe9e5ab964c375c53839296eb71eaa2")

if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
Expand Down
121 changes: 109 additions & 12 deletions ggml/src/ggml-cpu/kleidiai/kernels.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,94 @@

#include "kai_common.h"

#include "simd-mappings.h"

#include "kernels.h"

#define NELEMS(x) sizeof(x) / sizeof(*x)

static const size_t INT4_PER_BYTE = 2;
static const size_t INT4_BITS = 4;
static const int Q4_0_ZERO_POINT = 8;
const size_t INT4_PER_UINT16 = 4;

static void dequantize_row_qsi4c32pscalef16(
const void *packed_data,
int32_t row_idx,
int64_t nc,
float *out,
size_t nr_pack,
size_t packed_row_stride,
size_t kr,
size_t bl,
size_t num_bytes_multiplier
) {
size_t group_idx = row_idx / nr_pack;
size_t row_in_group = row_idx % nr_pack;
const uint8_t *packed_group = (const uint8_t *)packed_data + group_idx * packed_row_stride;
size_t num_blocks = nc / bl;
const uint8_t *block_ptr = packed_group;

for (size_t b = 0; b < num_blocks; ++b) {
uint16_t scale_f16 = *((const uint16_t *)(block_ptr + row_in_group * num_bytes_multiplier));
float scale = GGML_CPU_FP16_TO_FP32(scale_f16);

const uint8_t *segment_ptr = block_ptr + nr_pack * num_bytes_multiplier;
size_t num_segments = bl / kr;
size_t num_bytes_per_segment = kr / INT4_PER_BYTE;

for (size_t s = 0; s < num_segments; ++s) {
const uint8_t *seg_base = segment_ptr + s * nr_pack * num_bytes_per_segment;
const uint8_t *qbytes = seg_base + row_in_group * num_bytes_per_segment;
for (size_t k = 0; k < num_bytes_per_segment; ++k) {
uint8_t byte = qbytes[k] ^ 0x88;
int x0 = (byte & 0x0F) - Q4_0_ZERO_POINT;
int x1 = (byte >> INT4_BITS) - Q4_0_ZERO_POINT;
out[b * bl + s * num_bytes_per_segment + k] = x0 * scale;
out[b * bl + s * num_bytes_per_segment + k + bl/2] = x1 * scale;
}
}
block_ptr += nr_pack * num_bytes_multiplier + num_segments * nr_pack * num_bytes_per_segment;
}
}

static void dequantize_row_qsi4c32ps1s0scalef16(
const void *packed_data,
int32_t row_idx,
int64_t k,
float *out,
size_t nr,
size_t packed_row_stride,
size_t kr,
size_t bl,
size_t num_bytes_multiplier
) {
const size_t num_blocks = k / bl;
const size_t bl4 = bl / INT4_PER_UINT16;

size_t group_idx = row_idx / nr;
size_t row_in_group = row_idx % nr;

const uint8_t *packed_group = (const uint8_t *)packed_data + group_idx * packed_row_stride;
const uint16_t *qdata = (const uint16_t *)packed_group;
const uint16_t *scales = (const uint16_t *)(packed_group + packed_row_stride - (nr * num_blocks * num_bytes_multiplier));

for (size_t block_idx = 0; block_idx < num_blocks; ++block_idx) {
uint16_t scale_f16 = scales[row_in_group + block_idx * nr];
float scale = GGML_CPU_FP16_TO_FP32(scale_f16);

for (size_t bl4_idx = 0; bl4_idx < bl4; ++bl4_idx) {
uint16_t q = qdata[(block_idx * bl4 + bl4_idx) * nr + row_in_group];

for (size_t qidx = 0; qidx < INT4_PER_UINT16; ++qidx) {
int v = ((q >> (qidx * 4)) & 0xF) - Q4_0_ZERO_POINT;
out[block_idx * bl + bl4_idx * INT4_BITS + qidx] = v * scale;
}
}
}
GGML_UNUSED(kr);
}

static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
#if defined(__ARM_FEATURE_SME)
{
Expand Down Expand Up @@ -63,8 +148,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .to_float = */ dequantize_row_qsi4c32ps1s0scalef16,
},
/* .required_cpu = */ CPU_FEATURE_SME,
/* .lhs_type = */ GGML_TYPE_F32,
Expand Down Expand Up @@ -107,8 +194,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
/* .packed_stride = */ NULL,
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
/* .to_float = */ NULL,
},
/* .required_cpu = */ CPU_FEATURE_SME,
/* .lhs_type = */ GGML_TYPE_F32,
Expand Down Expand Up @@ -154,8 +243,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
/* .lhs_type = */ GGML_TYPE_F32,
Expand Down Expand Up @@ -200,8 +291,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
/* .lhs_type = */ GGML_TYPE_F32,
Expand Down Expand Up @@ -247,8 +340,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
/* .lhs_type = */ GGML_TYPE_F32,
Expand Down Expand Up @@ -293,8 +388,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
/* .lhs_type = */ GGML_TYPE_F32,
Expand Down
3 changes: 3 additions & 0 deletions ggml/src/ggml-cpu/kleidiai/kernels.h
Original file line number Diff line number Diff line change
Expand Up @@ -71,12 +71,15 @@ struct rhs_packing_info {
std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>,
std::function<size_t(size_t n, size_t k)>
> packed_size;
size_t (*packed_stride)(size_t k, size_t nr, size_t kr, size_t bl);
std::variant<
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>,
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs,
const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)>
> pack_func;
void (*to_float)(const void *packed_data, int32_t row_idx, int64_t nc, float *out, size_t nr_pack, size_t packed_row_stride,
size_t kr, size_t bl, size_t num_bytes_multiplier);
};

struct ggml_kleidiai_kernels {
Expand Down
98 changes: 88 additions & 10 deletions ggml/src/ggml-cpu/kleidiai/kleidiai.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,17 @@ struct ggml_kleidiai_context {
ggml_kleidiai_kernels * kernels;
} static ctx = { CPU_FEATURE_NONE, NULL };

static const char* cpu_feature_to_string(cpu_feature f) {
switch (f) {
case CPU_FEATURE_NONE: return "NONE";
case CPU_FEATURE_DOTPROD: return "DOTPROD";
case CPU_FEATURE_I8MM: return "I8MM";
case CPU_FEATURE_SVE: return "SVE";
case CPU_FEATURE_SME: return "SME";
default: return "UNKNOWN";
}
}

static void init_kleidiai_context(void) {

ggml_critical_section_start();
Expand All @@ -62,6 +73,11 @@ static void init_kleidiai_context(void) {
ctx.features |= ggml_cpu_has_sme() ? CPU_FEATURE_SME : CPU_FEATURE_NONE;
}
ctx.kernels = ggml_kleidiai_select_kernels_q4_0(ctx.features);
#ifndef NDEBUG
if (ctx.kernels) {
GGML_LOG_DEBUG("kleidiai: using kernel with CPU feature %s\n", cpu_feature_to_string(ctx.kernels->required_cpu));
}
#endif
}
ggml_critical_section_end();
}
Expand Down Expand Up @@ -102,6 +118,9 @@ static void transpose_f32kxn_f16nxk(size_t n, size_t k, float * dst, const uint1

class tensor_traits : public ggml::cpu::tensor_traits {
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
if (op->op != GGML_OP_MUL_MAT) {
return false;
}
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
GGML_ASSERT(kernels);
kernel_info * kernel = op->src[1]->ne[1] == 1 ? &kernels->gemv : &kernels->gemm;
Expand Down Expand Up @@ -135,6 +154,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
} else if (dst->src[0]->type == GGML_TYPE_F16) {
return compute_forward_kv_cache(params, dst);
}
} else if (dst->op == GGML_OP_GET_ROWS) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
return compute_forward_get_rows(params, dst);
}
}
return false;
}
Expand Down Expand Up @@ -270,6 +293,8 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}

bool compute_forward_q4_0(struct ggml_compute_params * params, struct ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0);

const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];

Expand Down Expand Up @@ -342,26 +367,62 @@ class tensor_traits : public ggml::cpu::tensor_traits {
return true;
}

bool compute_forward_get_rows(struct ggml_compute_params * params, struct ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0);
GGML_ASSERT(ctx.kernels);

const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];

GGML_TENSOR_BINARY_OP_LOCALS

rhs_packing_info * rhs_info = &ctx.kernels->rhs_info;
kernel_info * kernel = &ctx.kernels->gemm;

const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);

const size_t block_rows = kernel->get_nr();
const size_t kr = kernel->get_kr();

const size_t num_bytes_multiplier = sizeof(uint16_t);
const size_t packed_stride = rhs_info->packed_stride(nc, block_rows, kr, QK4_0);

const int ith = params->ith;
const int nth = params->nth;

const int dr = (nr + nth - 1) / nth;
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);

for (int64_t i = ir0; i < ir1; ++i) {
GGML_ASSERT(src1->type == GGML_TYPE_I32);
int64_t row_idx = ((const int32_t *)src1->data)[i];
GGML_ASSERT(row_idx >= 0 && row_idx < src0->ne[1]);

float *out = (float *)((char *)dst->data + i * nb1);
rhs_info->to_float(src0->data, row_idx, nc, out, block_rows, packed_stride, kr, QK4_0, num_bytes_multiplier);
}

return true;
}

public:
int repack(struct ggml_tensor * tensor, const void * data, size_t data_size) {
GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0);
GGML_ASSERT(ctx.kernels);
const size_t n = tensor->ne[1];
const size_t k = tensor->ne[0];
size_t nr = ctx.kernels->gemm.get_nr();
size_t kr = ctx.kernels->gemm.get_kr();
size_t sr = ctx.kernels->gemm.get_sr();

#ifndef NDEBUG
const size_t repacked_size = variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
GGML_ASSERT(repacked_size <= data_size && "repacked size larger than the packed size!");
#endif
struct kai_rhs_pack_qs4cxs1s0_param params;
params.lhs_zero_point = 1;
params.rhs_zero_point = 8;
variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, &params);

return 0;

GGML_UNUSED(data_size);
}
};
Expand All @@ -375,8 +436,8 @@ static ggml::cpu::tensor_traits * get_tensor_traits(ggml_backend_buffer_t, struc
static enum ggml_status ggml_backend_cpu_kleidiai_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
tensor->extra = (void *) ggml::cpu::kleidiai::get_tensor_traits(buffer, tensor);

GGML_UNUSED(buffer);
return GGML_STATUS_SUCCESS;
GGML_UNUSED(buffer);
}

static void ggml_backend_cpu_kleidiai_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
Expand Down Expand Up @@ -418,18 +479,35 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alignment(ggml_backend_b
GGML_UNUSED(buft);
}

static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->type == GGML_TYPE_Q4_0);
GGML_ASSERT(ctx.kernels);

const size_t n = tensor->ne[1];
const size_t k = tensor->ne[0];
const size_t nr = ctx.kernels->gemm.get_nr();
const size_t kr = ctx.kernels->gemm.get_kr();

return variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);

GGML_UNUSED(buft);
}

namespace ggml::cpu::kleidiai {
class extra_buffer_type : ggml::cpu::extra_buffer_type {
bool supports_op(ggml_backend_dev_t, const struct ggml_tensor * op) override {
if (op->op == GGML_OP_MUL_MAT &&
if ((op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) &&
op->src[0]->type == GGML_TYPE_Q4_0 &&
op->src[0]->buffer &&
(ggml_n_dims(op->src[0]) == 2) &&
op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type() && ctx.kernels) {
if (op->op == GGML_OP_GET_ROWS && op->src[1]->ne[0] != 8) {
return false;
}
if (op->src[1]->buffer && !ggml_backend_buft_is_host(op->src[1]->buffer->buft)) {
return false;
}
if (op->src[1]->type == GGML_TYPE_F32 &&
if ((op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_I32) &&
ggml_ne(op->src[1], 2) == 1 && ggml_ne(op->src[1], 3) == 1) {
return true;
}
Expand All @@ -438,7 +516,7 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
}

ggml::cpu::tensor_traits * get_tensor_traits(const struct ggml_tensor * op) override {
if (op->op == GGML_OP_MUL_MAT) {
if (op->op == GGML_OP_MUL_MAT || op->op == GGML_OP_GET_ROWS) {
if (op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_cpu_kleidiai_buffer_type()) {
return (ggml::cpu::tensor_traits *) op->src[0]->extra;
}
Expand Down Expand Up @@ -469,7 +547,7 @@ ggml_backend_buffer_type_t ggml_backend_cpu_kleidiai_buffer_type(void) {
/* .alloc_buffer = */ ggml_backend_cpu_kleidiai_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_kleidiai_buffer_type_get_alignment,
/* .get_max_size = */ nullptr, // defaults to SIZE_MAX
/* .get_alloc_size = */ nullptr, // defaults to ggml_nbytes
/* .get_alloc_size = */ ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size,
/* .is_host = */ nullptr,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
Expand Down
Loading