@@ -390,6 +390,7 @@ struct ggml_backend_opencl_context {
390
390
cl_program program_tanh;
391
391
cl_program program_upscale;
392
392
cl_program program_concat;
393
+ cl_program program_conv_2d;
393
394
cl_program program_tsembd;
394
395
cl_program program_mul_mv_id_q4_0_f32_8x_flat;
395
396
@@ -441,6 +442,7 @@ struct ggml_backend_opencl_context {
441
442
cl_kernel kernel_upscale_bilinear;
442
443
cl_kernel kernel_concat_f32_contiguous;
443
444
cl_kernel kernel_concat_f32_non_contiguous;
445
+ cl_kernel kernel_conv_2d;
444
446
cl_kernel kernel_timestep_embedding;
445
447
cl_kernel kernel_mul_mv_id_q4_0_f32_8x_flat;
446
448
@@ -1478,6 +1480,27 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
1478
1480
GGML_LOG_CONT (" ." );
1479
1481
}
1480
1482
1483
+ // conv2d
1484
+ {
1485
+ #ifdef GGML_OPENCL_EMBED_KERNELS
1486
+ const std::string kernel_src {
1487
+ #include " conv2d.cl.h"
1488
+ };
1489
+ #else
1490
+ const std::string kernel_src = read_file (" conv2d.cl" );
1491
+ #endif
1492
+ if (!kernel_src.empty ()) {
1493
+ backend_ctx->program_conv_2d =
1494
+ build_program_from_source (backend_ctx->context , backend_ctx->device , kernel_src.c_str (), compile_opts);
1495
+ CL_CHECK ((backend_ctx->kernel_conv_2d = clCreateKernel (backend_ctx->program_conv_2d , " kernel_conv_2d" , &err), err));
1496
+ GGML_LOG_CONT (" ." );
1497
+ } else {
1498
+ GGML_LOG_WARN (" ggml_opencl: conv2d kernel source not found or empty. This op will not be available.\n " );
1499
+ backend_ctx->program_conv_2d = nullptr ;
1500
+ backend_ctx->kernel_conv_2d = nullptr ;
1501
+ }
1502
+ }
1503
+
1481
1504
// mul_mv_id_q4_0_f32_8x_flat
1482
1505
{
1483
1506
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -2361,6 +2384,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
2361
2384
op->src [0 ]->ne [3 ] == 1 && op->ne [3 ] == 1 ;
2362
2385
case GGML_OP_UPSCALE:
2363
2386
return op->src [0 ]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
2387
+ case GGML_OP_CONV_2D:
2388
+ return op->src [0 ]->type == GGML_TYPE_F32 && op->src [1 ]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
2364
2389
case GGML_OP_CONCAT:
2365
2390
return op->src [0 ]->type == GGML_TYPE_F32 && op->src [1 ]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32;
2366
2391
case GGML_OP_TIMESTEP_EMBEDDING:
@@ -4946,7 +4971,12 @@ static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor
4946
4971
backend_ctx->enqueue_ndrange_kernel (kernel, 3 , global_work_size, NULL , dst);
4947
4972
}
4948
4973
4974
+ <<<<<<< HEAD
4949
4975
static void ggml_cl_mul_mat_f16_f32_tiled (ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
4976
+ =======
4977
+ static void ggml_cl_conv_2d (ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
4978
+ GGML_TENSOR_BINARY_OP_LOCALS;
4979
+ >>>>>>> 4d5d5a83 (add conv2d kernel)
4950
4980
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context ;
4951
4981
4952
4982
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra ;
@@ -4957,6 +4987,7 @@ static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_ten
4957
4987
cl_ulong offset1 = extra1->offset + src1->view_offs ;
4958
4988
cl_ulong offsetd = extrad->offset + dst->view_offs ;
4959
4989
4990
+ <<<<<<< HEAD
4960
4991
const int M = src0->ne [1 ];
4961
4992
const int N = src1->ne [1 ];
4962
4993
const int K = src0->ne [0 ];
@@ -4996,6 +5027,61 @@ static void ggml_cl_mul_mat_f16_f32_tiled(ggml_backend_t backend, const ggml_ten
4996
5027
};
4997
5028
4998
5029
backend_ctx->enqueue_ndrange_kernel (kernel, 2 , global_work_size, local_work_size, dst);
5030
+ =======
5031
+ const cl_uint Cout = ne03; const cl_uint Cin = ne02; const cl_uint N = ne13;
5032
+ const cl_uint KW = ne00; const cl_uint KH = ne01; const cl_uint W = ne10; const cl_uint H = ne11; const cl_uint OW = ne0; const cl_uint OH = ne1;
5033
+
5034
+ const cl_uint s0 = dst->op_params [0 ]; const cl_uint s1 = dst->op_params [1 ];
5035
+ const cl_uint p0 = dst->op_params [2 ]; const cl_uint p1 = dst->op_params [3 ];
5036
+ const cl_uint d0 = dst->op_params [4 ]; const cl_uint d1 = dst->op_params [5 ];
5037
+
5038
+ const cl_uint cl_nb01 = nb01/nb00; const cl_uint cl_nb02 = nb02/nb00; const cl_uint cl_nb03 = nb03/nb00;
5039
+ const cl_uint cl_nb11 = nb11/nb10; const cl_uint cl_nb12 = nb12/nb10; const cl_uint cl_nb13 = nb13/nb10;
5040
+ const cl_uint cl_nb1 = nb1/nb0; const cl_uint cl_nb2 = nb2/nb0; const cl_uint cl_nb3 = nb3/nb0;
5041
+
5042
+ const int64_t NPQ = (int64_t )N * OW * OH;
5043
+
5044
+ const uint32_t WG_SIZE = 128 ;
5045
+ const uint32_t BS_K = 128 ;
5046
+ const uint32_t BS_CRS = 16 ;
5047
+ const uint32_t BS_NPQ = 64 ;
5048
+ const uint32_t VEC_SIZE = 4 ;
5049
+
5050
+ auto splitWork = [](uint32_t work_size, uint32_t block_size) { return (block_size + work_size - 1 ) / block_size; };
5051
+ const uint32_t NB_K = splitWork (Cout, BS_K);
5052
+ const uint32_t NB_NPQ = splitWork (NPQ, BS_NPQ);
5053
+
5054
+ const size_t shmem_size = (size_t )(BS_K * (BS_CRS + 1 ) * sizeof (cl_half) + BS_CRS * (BS_NPQ / VEC_SIZE + 1 ) * sizeof (cl_half4));
5055
+
5056
+ cl_kernel kernel = backend_ctx->kernel_conv_2d ;
5057
+ cl_uint idx = 0 ;
5058
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_mem), &extra0->data_device )); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_ulong), &offset0));
5059
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_mem), &extra1->data_device )); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_ulong), &offset1));
5060
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_mem), &extrad->data_device )); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_ulong), &offsetd));
5061
+ CL_CHECK (clSetKernelArg (kernel, idx++, shmem_size, NULL ));
5062
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &Cout)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &Cin)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &N));
5063
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &KW)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &KH)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &W)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &H));
5064
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &OW)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &OH));
5065
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &s0)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &s1)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &p0)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &p1));
5066
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &d0)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &d1));
5067
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb01)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb02)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb03));
5068
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb11)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb12)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb13));
5069
+ CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb1)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb2)); CL_CHECK (clSetKernelArg (kernel, idx++, sizeof (cl_uint), &cl_nb3));
5070
+
5071
+ size_t global_work_size[] = { (size_t )NB_K * WG_SIZE, (size_t )NB_NPQ, 1 };
5072
+ size_t local_work_size[] = { (size_t )WG_SIZE, 1 , 1 };
5073
+
5074
+ #ifdef GGML_OPENCL_PROFILING
5075
+ cl_event evt;
5076
+ CL_CHECK (clEnqueueNDRangeKernel (backend_ctx->queue , kernel, 3 , NULL , global_work_size, local_work_size, 0 , NULL , &evt));
5077
+
5078
+ backend_ctx->profiling_info .emplace_back ();
5079
+ populateProfilingInfo (backend_ctx->profiling_info .back (), evt, kernel, 3 , global_work_size, local_work_size, dst);
5080
+ #else
5081
+ GGML_UNUSED (dst);
5082
+ CL_CHECK (clEnqueueNDRangeKernel (backend_ctx->queue , kernel, 3 , NULL , global_work_size, local_work_size, 0 , NULL , NULL ));
5083
+ #endif
5084
+ >>>>>>> 4d5d5a83 (add conv2d kernel)
4999
5085
}
5000
5086
5001
5087
static void ggml_cl_mul_mat (ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -6752,6 +6838,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
6752
6838
}
6753
6839
ggml_cl_upscale (backend, tensor->src [0 ], tensor);
6754
6840
return true ;
6841
+ case GGML_OP_CONV_2D:
6842
+ if (!any_on_device) {
6843
+ return false ;
6844
+ }
6845
+ func = ggml_cl_conv_2d;
6846
+ break ;
6755
6847
case GGML_OP_CONCAT:
6756
6848
if (!any_on_device) {
6757
6849
return false ;
0 commit comments