Skip to content

Commit 086cf81

Browse files
authored
llama : fix parallel processing for lfm2 (#14705)
1 parent d9b6910 commit 086cf81

File tree

1 file changed

+39
-17
lines changed

1 file changed

+39
-17
lines changed

src/llama-model.cpp

Lines changed: 39 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -16554,46 +16554,68 @@ struct llm_build_lfm2 : public llm_graph_context {
1655416554
ggml_tensor * cur,
1655516555
llm_graph_input_rs * inp_recr,
1655616556
int il) {
16557-
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
16557+
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
16558+
const uint32_t kv_head = mctx_cur->get_head();
16559+
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
16560+
const int64_t n_seqs = ubatch.n_seqs;
16561+
GGML_ASSERT(n_seqs != 0);
16562+
GGML_ASSERT(ubatch.equal_seqs);
16563+
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
16564+
16565+
GGML_ASSERT(hparams.n_shortconv_l_cache > 1);
16566+
const uint32_t d_conv = hparams.n_shortconv_l_cache - 1;
16567+
16568+
// {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
16569+
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
1655816570

1655916571
auto * bcx = build_lora_mm(model.layers[il].shortconv.in_proj, cur);
1656016572
cb(bcx, "model.layers.{}.conv.in_proj", il);
1656116573

1656216574
constexpr auto n_chunks = 3;
1656316575
GGML_ASSERT(bcx->ne[0] % n_chunks == 0);
1656416576
auto const chunk_size = bcx->ne[0] / n_chunks;
16565-
auto * b = ggml_view_2d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->nb[1], 0 * chunk_size * ggml_element_size(bcx));
16566-
auto * c = ggml_view_2d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->nb[1], 1 * chunk_size * ggml_element_size(bcx));
16567-
auto * x = ggml_view_2d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->nb[1], 2 * chunk_size * ggml_element_size(bcx));
16577+
auto * b = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 0*chunk_size*ggml_element_size(bcx));
16578+
auto * c = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 1*chunk_size*ggml_element_size(bcx));
16579+
auto * x = ggml_view_3d(ctx0, bcx, chunk_size, bcx->ne[1], bcx->ne[2], bcx->nb[1], bcx->nb[2], 2*chunk_size*ggml_element_size(bcx));
1656816580

1656916581
auto * bx = ggml_transpose(ctx0, ggml_mul(ctx0, b, x));
1657016582

16571-
// read conv state directly, with build_rs generation is slower
16572-
ggml_tensor * conv_state = mctx_cur->get_r_l(il);
16573-
const int64_t n_seqs = ubatch.n_seqs;
16574-
ggml_tensor * conv = build_rs(inp_recr, gf, conv_state, hparams.n_embd_r(), n_seqs);
16575-
conv = ggml_reshape_3d(ctx0, conv_state, hparams.n_shortconv_l_cache - 1, hparams.n_embd, n_seqs);
16583+
// read conv state
16584+
auto * conv_state = mctx_cur->get_r_l(il);
16585+
auto * conv_rs = build_rs(inp_recr, gf, conv_state, hparams.n_embd_r(), n_seqs);
16586+
auto * conv = ggml_reshape_3d(ctx0, conv_rs, d_conv, hparams.n_embd, n_seqs);
1657616587

1657716588
bx = ggml_concat(ctx0, conv, bx, 0);
1657816589
GGML_ASSERT(bx->ne[0] > conv->ne[0]);
1657916590

16580-
auto * new_conv = ggml_view_2d(ctx0, bx, conv->ne[0], bx->ne[1], bx->nb[1], (bx->ne[0] - conv->ne[0]) * ggml_element_size(bx));
16591+
// last d_conv columns is a new conv state
16592+
auto * new_conv = ggml_view_3d(ctx0, bx, conv->ne[0], bx->ne[1], bx->ne[2], bx->nb[1], bx->nb[2], (bx->ne[0] - conv->ne[0])*ggml_element_size(bx));
1658116593
GGML_ASSERT(ggml_are_same_shape(conv, new_conv));
1658216594

16583-
// write conv state
16584-
ggml_build_forward_expand(gf, ggml_cpy(ctx0, new_conv, conv_state));
16595+
// write new conv conv state
16596+
ggml_build_forward_expand(
16597+
gf,
16598+
ggml_cpy(
16599+
ctx0,
16600+
new_conv,
16601+
ggml_view_1d(
16602+
ctx0,
16603+
conv_state,
16604+
ggml_nelements(new_conv),
16605+
kv_head*d_conv*n_embd*ggml_element_size(new_conv)
16606+
)
16607+
)
16608+
);
1658516609

1658616610
auto * conv_kernel = model.layers[il].shortconv.conv;
16587-
GGML_ASSERT(hparams.n_shortconv_l_cache > 0);
16588-
16589-
// construct ssm_conv op
16590-
ggml_tensor * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
16611+
auto * conv_out = ggml_ssm_conv(ctx0, bx, conv_kernel);
1659116612
cb(conv_out, "model.layers.{}.conv.conv", il);
1659216613

1659316614
auto * y = ggml_mul(ctx0, c, conv_out);
16594-
1659516615
y = build_lora_mm(model.layers[il].shortconv.out_proj, y);
1659616616
cb(y, "model.layers.{}.conv.out_proj", il);
16617+
// {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
16618+
y = ggml_reshape_2d(ctx0, y, y->ne[0], n_seq_tokens * n_seqs);
1659716619

1659816620
return y;
1659916621
}

0 commit comments

Comments
 (0)