Skip to content

geekhall/gof

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

gof

程序设计的七大原则以及GoF的23种设计模式的Java代码实现

1. 软件设计的七大原则

Principle 1 : 开闭原则(Open Close Principle, OCP)

内容:对扩展开放,对修改关闭 实现方式: 抽象约束,封装变化 具体实例: Windows主题、网站主题,抽象主题的共同特点为抽象类, 将每个具体主题作为其子类,用户可根据需要选择或者增加新的主题而不需要修改源码。 所以它满足开闭原则

Principle 2 : 里氏替换原则(Liskov Substitution Principle, LSP)

内容: 继承必须确保超类所拥有的性质在子类中仍然成立,主要阐述了有关继承的一些原则,也就是什么时候应该使用继承,什么时候不应该使用继承,

实现方式:

  • 子类可以实现父类的抽象方法,但不能覆盖父类的非抽象方法
  • 子类中可以增加自己特有的方法
  • 当子类的方法重载父类的方法时,方法的前置条件(即方法的输入参数)要比父类的方法更宽松
  • 当子类的方法实现父类的方法时(重写/重载或实现抽象方法),方法的后置条件(即方法的的输出/返回值)要比父类的方法更严格或相等

具体实例:

  • 几维鸟不是鸟
  • 正方形不是长方形

Principle 3 : 依赖倒置原则 (Dependence Inversion Principle, DIP)

内容:高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象

其核心思想是:要面向接口编程,不要面向实现编程

依赖倒置原则是实现开闭原则的重要途径之一,它降低了客户与实现模块之间的耦合。

作用:

  • 依赖倒置原则可以降低类间的耦合性。
  • 依赖倒置原则可以提高系统的稳定性。
  • 依赖倒置原则可以减少并行开发引起的风险。
  • 依赖倒置原则可以提高代码的可读性和可维护性。

实现方法:面向接口编程

  1. 每个类尽量提供接口或抽象类,或者两者都具备。
  2. 变量的声明类型尽量是接口或者是抽象类。
  3. 任何类都不应该从具体类派生。
  4. 使用继承时尽量遵循里氏替换原则。

Principle 4 : 单一职责原则 (Single Responsibility Principle, SRP)

主要内容:一个类应该有且仅有一个引起它变化的原因,否则类应该被拆分

对象不应该承担太多职责,如果一个对象承担了太多的职责,至少存在以下两个缺点:

  1. 一个职责的变化可能会削弱或者抑制这个类实现其他职责的能力;
  2. 当客户端需要该对象的某一个职责时,不得不将其他不需要的职责全都包含进来,从而造成冗余代码或代码的浪费。

优点:

单一职责原则的核心就是控制类的粒度大小、将对象解耦、提高其内聚性。如果遵循单一职责原则将有以下优点。

  • 降低类的复杂度。一个类只负责一项职责,其逻辑肯定要比负责多项职责简单得多。
  • 提高类的可读性。复杂性降低,自然其可读性会提高。
  • 提高系统的可维护性。可读性提高,那自然更容易维护了。
  • 变更引起的风险降低。变更是必然的,如果单一职责原则遵守得好,当修改一个功能时,可以显著降低对其他功能的影响。

接口一定要做到单一职责,类的设计尽量做到只有一个原因引起变化

Principle 5 : 接口隔离原则(Interface Segregation Principle, ISP)

内容:要求程序员尽量将臃肿庞大的接口拆分成更小的和更具体的接口,让接口中只包含客户感兴趣的方法。

定义:客户端不应该被迫依赖于它不使用的方法

定义:一个类对另一个类的依赖应该建立在最小的接口上

含义:要为各个类建立它们需要的专用接口,而不要试图去建立一个很庞大的接口供所有依赖它的类去调用。

优点:

  • 将臃肿庞大的接口分解为多个粒度小的接口,可以预防外来变更的扩散,提高系统的灵活性和可维护性。
  • 接口隔离提高了系统的内聚性,减少了对外交互,降低了系统的耦合性。
  • 如果接口的粒度大小定义合理,能够保证系统的稳定性;但是,如果定义过小,则会造成接口数量过多,使设计复杂化;如果定义太大,灵活性降低,无法提供定制服务,给整体项目带来无法预料的风险。
  • 使用多个专门的接口还能够体现对象的层次,因为可以通过接口的继承,实现对总接口的定义。
  • 能减少项目工程中的代码冗余。过大的大接口里面通常放置许多不用的方法,当实现这个接口的时候,被迫设计冗余的代码。

实例: 学生成绩管理程序一般包含插入成绩、删除成绩、修改成绩、计算总分、计算均分、打印成绩信息、査询成绩信息等功能, 如果将这些功能全部放到一个接口中显然不太合理,正确的做法是将它们分别放在输入模块、统计模块和打印模块等 3 个模块中,

Principle 6 : 迪米特法则(Least Knowledge Principle, LKP)

内容:又叫做最少知识原则。只与你的直接朋友交谈,不跟“陌生人”说话。

含义:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。

例子: 分析:明星由于全身心投入艺术,所以许多日常事务由经纪人负责处理,如与粉丝的见面会, 与媒体公司的业务洽淡等。这里的经纪人是明星的朋友,而粉丝和媒体公司是陌生人,所以适合使用迪米特法则

Principle 7 : 合成复用原则(Composite Reuse Principle, CRP)

内容: 又叫组合/聚合复用原则,它要求软件在软件复用时,要尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。

如果要使用继承关系,则必须严格遵循里氏替换原则。合成复用原则同里氏替换原则相辅相成的,两者都是开闭原则的具体实现规范。

重要性:

通常类的复用分为继承复用和合成复用两种,继承复用虽然有简单和易实现的优点,但它也存在以下缺点。

  1. 继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为“白箱”复用。
  2. 子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。
  3. 它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化。

采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点。

  1. 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。
  2. 新旧类之间的耦合度低。这种复用所需的依赖较少,新对象存取成分对象的唯一方法是通过成分对象的接口。
  3. 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

实现方法:

合成复用原则是通过将已有的对象纳入新对象中,作为新对象的成员对象来实现的,新对象可以调用已有对象的功能,从而达到复用。

一句话总结软件设计的七大原则

设计原则 一句话归纳 目的
开闭原则 对扩展开放,对修改关闭 降低维护带来的新风险
依赖倒置原则 高层不应该依赖低层,要面向接口编程 更利于代码结构的升级扩展
单一接口原则 一个类只干一件事,实现类要单一 便于理解,提高代码的可读性
接口隔离原则 一个接口只干一件事,接口要精简单一 功能解耦,高聚合、低耦合
迪米特法则 不该知道的不要知道,一个类应该保持对其它对象最少的了解,降低耦合度 只和朋友交流,不和陌生人说话,减少代码臃肿
里氏替换原则 不要破坏继承体系,子类重写方法功能发生改变,不应该影响父类方法的含义 防止继承泛滥
合成复用原则 尽量使用组合或者聚合关系实现代码复用,少使用继承 降低代码耦合

记忆口诀:访问加限制,函数要节俭,依赖不允许,动态加接口,父类要抽象,扩展不更改。

创建型模式

  1. 单例模式(Singleton):某个类只能生成一个实例,该类提供了一个全局访问点供外部获取该实例,其拓展是有限多例模式。
  2. 原型模式(Prototype):将一个对象作为原型,通过对其进行复制而克隆出多个和原型类似的新实例。
  3. 工厂方法模式(FactoryMethod):定义一个用于创建产品的接口,由子类决定生产什么产品。
  4. 抽象工厂模式(AbstractFactory):提供一个创建产品族的接口,其每个子类可以生产一系列相关的产品。
  5. 建造者模式 (Builder):将一个复杂对象分解成多个相对简单的部分,然后根据不同需要分别创建它们,最后构建成该复杂对象。

创建型模式 1. 单例模式(Singleton)

定义:指一个类只有一个实例,且该类能自行创建这个实例的一种模式 单例模式的优点:

  1. 单例模式可以保证内存里只有一个实例,减少了内存的开销。
  2. 可以避免对资源的多重占用。
  3. 单例模式设置全局访问点,可以优化和共享资源的访问。

单例模式的缺点:

  1. 单例模式一般没有接口,扩展困难。如果要扩展,则除了修改原来的代码,没有第二种途径,违背开闭原则。
  2. 在并发测试中,单例模式不利于代码调试。在调试过程中,如果单例中的代码没有执行完,也不能模拟生成一个新的对象。
  3. 单例模式的功能代码通常写在一个类中,如果功能设计不合理,则很容易违背单一职责原则。

应用场景

  • 需要频繁创建的一些类,使用单例可以降低系统的内存压力,减少 GC。
  • 某类只要求生成一个对象的时候,如一个班中的班长、每个人的身份证号等。
  • 某些类创建实例时占用资源较多,或实例化耗时较长,且经常使用。
  • 某类需要频繁实例化,而创建的对象又频繁被销毁的时候,如多线程的线程池、网络连接池等。
  • 频繁访问数据库或文件的对象。
  • 对于一些控制硬件级别的操作,或者从系统上来讲应当是单一控制逻辑的操作,如果有多个实例,则系统会完全乱套。
  • 当对象需要被共享的场合。由于单例模式只允许创建一个对象,共享该对象可以节省内存,并加快对象访问速度。如 Web 中的配置对象、数据库的连接池等。

创建型模式 2. 原型模式(Prototype)

定义:用一个已经创建的实例作为原型,通过复制该原型对象来创建一个和原型相同或相似的新对象

原型模式的优点:

  • Java 自带的原型模式基于内存二进制流的复制,在性能上比直接 new 一个对象更加优良。
  • 可以使用深克隆方式保存对象的状态,使用原型模式将对象复制一份,并将其状态保存起来,简化了创建对象的过程,以便在需要的时候使用(例如恢复到历史某一状态),可辅助实现撤销操作。

原型模式的缺点:

  • 需要为每一个类都配置一个 clone 方法
  • clone 方法位于类的内部,当对已有类进行改造的时候,需要修改代码,违背了开闭原则。 当实现深克隆时,需要编写较为复杂的代码,而且当对象之间存在多重嵌套引用时,为了实现深克隆,每一层对象对应的类都必须支持深克隆,实现起来会比较麻烦。因此,深克隆、浅克隆需要运用得当。

实现: 原型模式包含以下主要角色。

  1. 抽象原型类:规定了具体原型对象必须实现的接口。
  2. 具体原型类:实现抽象原型类的 clone() 方法,它是可被复制的对象。
  3. 访问类:使用具体原型类中的 clone() 方法来复制新的对象。

创建型模式 3. 工厂模式 (Factory)

简单工厂模式(Simple Factory)

定义:定义一个创建产品对象的工厂接口,将产品对象的实际创建工作推迟到具体子工厂类当中。 这满足创建型模式中所要求的“创建与使用相分离”的特点。

按实际业务场景划分,工厂模式有 3 种不同的实现方式,分别是简单工厂模式、工厂方法模式和抽象工厂模式。

简单工厂模式的主要角色如下:

  • 简单工厂(SimpleFactory):是简单工厂模式的核心,负责实现创建所有实例的内部逻辑。工厂类的创建产品类的方法可以被外界直接调用,创建所需的产品对象。
  • 抽象产品(Product):是简单工厂创建的所有对象的父类,负责描述所有实例共有的公共接口。
  • 具体产品(ConcreteProduct):是简单工厂模式的创建目标。

工厂方法模式(FactoryMethod)

简单工厂模式当增加新的产品时需要修改工厂类的创建产品方法,违背了开闭原则, 而工厂方法模式是对简单工厂模式的进一步抽象,可以在不修改原来代码的情况下引进新的产品,满足了开闭原则。

优点:

  • 用户只需要知道具体工厂的名称就可得到所要的产品,无须知道产品的具体创建过程。
  • 灵活性增强,对于新产品的创建,只需多写一个相应的工厂类。
  • 典型的解耦框架。高层模块只需要知道产品的抽象类,无须关心其他实现类,满足迪米特法则、依赖倒置原则和里氏替换原则。

缺点:

  • 类的个数容易过多,增加复杂度
  • 增加了系统的抽象性和理解难度
  • 抽象产品只能生产一种产品,此弊端可使用抽象工厂模式解决。

工厂方法模式的主要角色如下。

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,调用者通过它访问具体工厂的工厂方法 newProduct() 来创建产品。
  • 具体工厂(ConcreteFactory):主要是实现抽象工厂中的抽象方法,完成具体产品的创建。
  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能。
  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间一一对应。

抽象工厂模式(AbstractFactory)

定义:是一种为访问类提供一个创建一组相关或相互依赖对象的接口,且访问类无须指定所要产品的具体类就能得到同族的不同等级的产品的模式结构。

抽象工厂模式是工厂方法模式的升级版本,工厂方法模式只生产一个等级的产品,而抽象工厂模式可生产多个等级的产品。

使用抽象工厂模式一般要满足以下条件。

  • 系统中有多个产品族,每个具体工厂创建同一族但属于不同等级结构的产品。
  • 系统一次只可能消费其中某一族产品,即同族的产品一起使用。

抽象工厂模式除了具有工厂方法模式的优点外,其他主要优点如下。

  • 可以在类的内部对产品族中相关联的多等级产品共同管理,而不必专门引入多个新的类来进行管理。
  • 当需要产品族时,抽象工厂可以保证客户端始终只使用同一个产品的产品组。
  • 抽象工厂增强了程序的可扩展性,当增加一个新的产品族时,不需要修改原代码,满足开闭原则。

其缺点是:当产品族中需要增加一个新的产品时,所有的工厂类都需要进行修改。增加了系统的抽象性和理解难度。

抽象工厂模式的主要角色:

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,它包含多个创建产品的方法 newProduct(),可以创建多个不同等级的产品。
  • 具体工厂(Concrete Factory):主要是实现抽象工厂中的多个抽象方法,完成具体产品的创建。
  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能,抽象工厂模式有多个抽象产品。
  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间是多对一的关系。

创建型模式 4 : 建造者模式(Builder)

定义:指将一个复杂对象的构造与它的表示分离,使同样的构建过程可以创建不同的表示。

该模式的主要优点如下:

  • 封装性好,构建和表示分离。
  • 扩展性好,各个具体的建造者相互独立,有利于系统的解耦。
  • 客户端不必知道产品内部组成的细节,建造者可以对创建过程逐步细化,而不对其它模块产生任何影响,便于控制细节风险。

其缺点如下:

  • 产品的组成部分必须相同,这限制了其使用范围。
  • 如果产品的内部变化复杂,如果产品内部发生变化,则建造者也要同步修改,后期维护成本较大。

建造者(Builder)模式的主要角色如下。

  • 产品角色(Product):它是包含多个组成部件的复杂对象,由具体建造者来创建其各个零部件。
  • 抽象建造者(Builder):它是一个包含创建产品各个子部件的抽象方法的接口,通常还包含一个返回复杂产品的方法 getResult()。
  • 具体建造者(Concrete Builder):实现 Builder 接口,完成复杂产品的各个部件的具体创建方法。
  • 指挥者(Director):它调用建造者对象中的部件构造与装配方法完成复杂对象的创建,在指挥者中不涉及具体产品的信息。

结构型模式

  1. 代理(Proxy)模式:为某对象提供一种代理以控制对该对象的访问。即客户端通过代理间接地访问该对象,从而限制、增强或修改该对象的一些特性。
  2. 适配器(Adapter)模式:将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。
  3. 桥接(Bridge)模式:将抽象与实现分离,使它们可以独立变化。它是用组合关系代替继承关系来实现的,从而降低了抽象和实现这两个可变维度的耦合度。
  4. 装饰(Decorator)模式:动态地给对象增加一些职责,即增加其额外的功能。
  5. 外观(Facade)模式:为多个复杂的子系统提供一个一致的接口,使这些子系统更加容易被访问。
  6. 享元(Flyweight)模式:运用共享技术来有效地支持大量细粒度对象的复用。
  7. 组合(Composite)模式:将对象组合成树状层次结构,使用户对单个对象和组合对象具有一致的访问性。

结构型模式 1 : 代理模式(Proxy)

定义:由于某些原因需要给某对象提供一个代理以控制对该对象的访问。这时,访问对象不适合或者不能直接引用目标对象,代理对象作为访问对象和目标对象之间的中介。

代理模式的主要优点有:

  • 代理模式在客户端与目标对象之间起到一个中介作用和保护目标对象的作用;
  • 代理对象可以扩展目标对象的功能;
  • 代理模式能将客户端与目标对象分离,在一定程度上降低了系统的耦合度,增加了程序的可扩展性

其主要缺点是:

  • 代理模式会造成系统设计中类的数量增加
  • 在客户端和目标对象之间增加一个代理对象,会造成请求处理速度变慢;
  • 增加了系统的复杂度;

那么如何解决以上提到的缺点呢?答案是可以使用动态代理方式

代理模式的主要角色如下。

  • 抽象主题(Subject)类:通过接口或抽象类声明真实主题和代理对象实现的业务方法。
  • 真实主题(Real Subject)类:实现了抽象主题中的具体业务,是代理对象所代表的真实对象,是最终要引用的对象。
  • 代理(Proxy)类:提供了与真实主题相同的接口,其内部含有对真实主题的引用,它可以访问、控制或扩展真实主题的功能。

根据代理的创建时期,代理模式分为静态代理和动态代理。

  • 静态:由程序员创建代理类或特定工具自动生成源代码再对其编译,在程序运行前代理类的 .class 文件就已经存在了。
  • 动态:在程序运行时,运用反射机制动态创建而成

静态代理模式:

动态代理模式:

在前面介绍的代理模式中,代理类中包含了对真实主题的引用,这种方式存在两个缺点。

  • 真实主题与代理主题一一对应,增加真实主题也要增加代理。

  • 设计代理以前真实主题必须事先存在,不太灵活。采用动态代理模式可以解决以上问题,如 SpringAOP

  • 动态代理的代理类是动态生成的,不是事先直接写好的。

  • 动态代理分为两大类:基于接口的动态代理,和基于类的动态代理。

需要了解两个类:Proxy(代理类), InvocationHandler(调用处理程序)

应用场景:

  • 切换数据源
  • JDK
  • Spring的AOP底层
  • MyBatis源码中

生活中的实例:

  • 结婚找中介帮忙筹备婚礼
  • 找房产中介帮忙租房

结构型模式 2 : 适配器模式 (Adaptor)

定义:将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类能一起工作。适配器模式分为类结构型模式和对象结构型模式两种,前者类之间的耦合度比后者高,且要求程序员了解现有组件库中的相关组件的内部结构,所以应用相对较少些。

该模式的主要优点如下。

  • 客户端通过适配器可以透明地调用目标接口。
  • 复用了现存的类,程序员不需要修改原有代码而重用现有的适配者类。
  • 将目标类和适配者类解耦,解决了目标类和适配者类接口不一致的问题。
  • 在很多业务场景中符合开闭原则。

其缺点是:

  • 适配器编写过程需要结合业务场景全面考虑,可能会增加系统的复杂性。
  • 增加代码阅读难度,降低代码可读性,过多使用适配器会使系统代码变得凌乱。

适配器模式(Adapter)包含以下主要角色。

  • 目标(Target)接口:当前系统业务所期待的接口,它可以是抽象类或接口。
  • 适配者(Adaptee)类:它是被访问和适配的现存组件库中的组件接口。
  • 适配器(Adapter)类:它是一个转换器,通过继承或引用适配者的对象,把适配者接口转换成目标接口,让客户按目标接口的格式访问适配者。

按照实现方式可以分为类适配器(使用继承实现)和对象适配器(使用组合实现,常用)

适配器模式(Adapter)可扩展为双向适配器模式,双向适配器类既可以把适配者接口转换成目标接口,也可以把目标接口转换成适配者接口,

实际例子:

  • 输入输出流转接:InputStreamReader(InputStream)
  • Java的GUI中
  • SpringMVC中的DispatchServlet核心分发
  • SpringBoot中
  • 第三方登录

生活中的实例:

  • 电脑网线转接头,适配器

结构型模式 3 :桥接模式 (Bridge)

定义:将抽象与实现分离,使它们可以独立变化。

它是用组合关系代替继承关系来实现,从而降低了抽象和实现这两个可变维度的耦合度。

通过上面的讲解,我们能很好的感觉到桥接模式遵循了里氏替换原则和依赖倒置原则,最终实现了开闭原则,对修改关闭,对扩展开放。这里将桥接模式的优缺点总结如下。

桥接(Bridge)模式的优点是:

  • 抽象与实现分离,扩展能力强
  • 符合开闭原则
  • 符合合成复用原则
  • 其实现细节对客户透明

缺点是:由于聚合关系建立在抽象层,要求开发者针对抽象化进行设计与编程,能正确地识别出系统中两个独立变化的维度,这增加了系统的理解与设计难度。

桥接(Bridge)模式包含以下主要角色。

  • 抽象化(Abstraction)角色:定义抽象类,并包含一个对实现化对象的引用。
  • 扩展抽象化(Refined Abstraction)角色:是抽象化角色的子类,实现父类中的业务方法,并通过组合关系调用实现化角色中的业务方法。
  • 实现化(Implementor)角色:定义实现化角色的接口,供扩展抽象化角色调用。
  • 具体实现化(Concrete Implementor)角色:给出实现化角色接口的具体实现。

应用案例:

  • AWT中的Peer架构。
  • JDBC驱动程序也是桥接模式的应用。

生活中实例:

  • 电脑和品牌

结构型模式 4 : 装饰器模式(Decorator)

定义:指在不改变现有对象结构的情况下,动态地给该对象增加一些职责(即增加其额外功能)的模式。

装饰器模式的主要优点有:

  • 装饰器是继承的有力补充,比继承灵活,在不改变原有对象的情况下,动态的给一个对象扩展功能,即插即用
  • 通过使用不用装饰类及这些装饰类的排列组合,可以实现不同效果
  • 装饰器模式完全遵守开闭原则

其主要缺点是:装饰器模式会增加许多子类,过度使用会增加程序得复杂性。

装饰器模式主要包含以下角色。

  • 抽象构件(Component)角色:定义一个抽象接口以规范准备接收附加责任的对象。
  • 具体构件(ConcreteComponent)角色:实现抽象构件,通过装饰角色为其添加一些职责。
  • 抽象装饰(Decorator)角色:继承抽象构件,并包含具体构件的实例,可以通过其子类扩展具体构件的功能。
  • 具体装饰(ConcreteDecorator)角色:实现抽象装饰的相关方法,并给具体构件对象添加附加的责任。

主要应用场景:

  • Java中的I/O标准库设计。如下面这些类都是抽象装饰类:
    • InputStream的子类FilterInputStream,
    • OutputStream 的子类 FilterOutputStream,
    • Reader 的子类 BufferedReader 以及 FilterReader,
    • Writer 的子类 BufferedWriter、FilterWriter 以及 PrintWriter 等,
BufferedReader in = new BufferedReader(new FileReader("filename.txt"));
String s = in.readLine();

结构型模式 5 : 外观模式(Facade)

定义:定义了一个高层接口。它包含了对各个子系统的引用,客户端可以通过它访问各个子系统的功能。

外观(Facade)模式包含以下主要角色。

  • 外观(Facade)角色:为多个子系统对外提供一个共同的接口。
  • 子系统(Sub System)角色:实现系统的部分功能,客户可以通过外观角色访问它。
  • 客户(Client)角色:通过一个外观角色访问各个子系统的功能。

应用场景:

  • 对分层结构系统构建时,使用外观模式定义子系统中每层的入口点可以简化子系统之间的依赖关系。
  • 当一个复杂系统的子系统很多时,外观模式可以为系统设计一个简单的接口供外界访问。
  • 当客户端与多个子系统之间存在很大的联系时,引入外观模式可将它们分离,从而提高子系统的独立性和可移植性。

结构型模式 6 : 享元模式(Flyweight)

定义:运用共享技术来有效地支持大量细粒度对象的复用。它通过共享已经存在的对象来大幅度减少需要创建的对象数量、避免大量相似类的开销,从而提高系统资源的利用率。

享元模式的主要优点是:相同对象只要保存一份,这降低了系统中对象的数量,从而降低了系统中细粒度对象给内存带来的压力。

其主要缺点是:

  • 为了使对象可以共享,需要将一些不能共享的状态外部化,这将增加程序的复杂性。
  • 读取享元模式的外部状态会使得运行时间稍微变长。

享元模式的主要角色有如下。

  • 抽象享元角色(Flyweight):是所有的具体享元类的基类,为具体享元规范需要实现的公共接口,非享元的外部状态以参数的形式通过方法传入。
  • 具体享元(Concrete Flyweight)角色:实现抽象享元角色中所规定的接口。
  • 非享元(Unsharable Flyweight)角色:是不可以共享的外部状态,它以参数的形式注入具体享元的相关方法中。
  • 享元工厂(Flyweight Factory)角色:负责创建和管理享元角色。当客户对象请求一个享元对象时,享元工厂检査系统中是否存在符合要求的享元对象,如果存在则提供给客户;如果不存在的话,则创建一个新的享元对象。

  • UnsharedConcreteFlyweight 是非享元角色,里面包含了非共享的外部状态信息 info;
  • Flyweight 是抽象享元角色,里面包含了享元方法 operation(UnsharedConcreteFlyweight state),非享元的外部状态以参数的形式通过该方法传入;
  • ConcreteFlyweight 是具体享元角色,包含了关键字 key,它实现了抽象享元接口;
  • FlyweightFactory 是享元工厂角色,它是关键字 key 来管理具体享元;
  • 客户角色通过享元工厂获取具体享元,并访问具体享元的相关方法。

结构型模式 7 : 组合模式(Composite)

定义: 有时又叫作整体-部分(Part-Whole)模式,它是一种将对象组合成树状的层次结构的模式,用来表示“整体-部分”的关系,使用户对单个对象和组合对象具有一致的访问性

组合模式的主要优点有:

  • 组合模式使得客户端代码可以一致地处理单个对象和组合对象,无须关心自己处理的是单个对象,还是组合对象,这简化了客户端代码;
  • 更容易在组合体内加入新的对象,客户端不会因为加入了新的对象而更改源代码,满足“开闭原则”;

其主要缺点是:

  • 设计较复杂,客户端需要花更多时间理清类之间的层次关系;
  • 不容易限制容器中的构件;
  • 不容易用继承的方法来增加构件的新功能;

组合模式包含以下主要角色。 抽象构件(Component)角色:它的主要作用是为树叶构件和树枝构件声明公共接口,并实现它们的默认行为。在透明式的组合模式中抽象构件还声明访问和管理子类的接口;在安全式的组合模式中不声明访问和管理子类的接口,管理工作由树枝构件完成。(总的抽象类或接口,定义一些通用的方法,比如新增、删除) 树叶构件(Leaf)角色:是组合中的叶节点对象,它没有子节点,用于继承或实现抽象构件。 树枝构件(Composite)角色 / 中间构件:是组合中的分支节点对象,它有子节点,用于继承和实现抽象构件。它的主要作用是存储和管理子部件,通常包含 Add()、Remove()、GetChild() 等方法。

行为型模式

  1. 模板方法(Template Method)模式:定义一个操作中的算法骨架,将算法的一些步骤延迟到子类中,使得子类在可以不改变该算法结构的情况下重定义该算法的某些特定步骤。
  2. 策略(Strategy)模式:定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的改变不会影响使用算法的客户。
  3. 命令(Command)模式:将一个请求封装为一个对象,使发出请求的责任和执行请求的责任分割开。
  4. 职责链(Chain of Responsibility)模式:把请求从链中的一个对象传到下一个对象,直到请求被响应为止。通过这种方式去除对象之间的耦合。
  5. 状态(State)模式:允许一个对象在其内部状态发生改变时改变其行为能力。
  6. 观察者(Observer)模式:多个对象间存在一对多关系,当一个对象发生改变时,把这种改变通知给其他多个对象,从而影响其他对象的行为。
  7. 中介者(Mediator)模式:定义一个中介对象来简化原有对象之间的交互关系,降低系统中对象间的耦合度,使原有对象之间不必相互了解。
  8. 迭代器(Iterator)模式:提供一种方法来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示。
  9. 访问者(Visitor)模式:在不改变集合元素的前提下,为一个集合中的每个元素提供多种访问方式,即每个元素有多个访问者对象访问。
  10. 备忘录(Memento)模式:在不破坏封装性的前提下,获取并保存一个对象的内部状态,以便以后恢复它。
  11. 解释器(Interpreter)模式:提供如何定义语言的文法,以及对语言句子的解释方法,即解释器。

行为型模式 1 : 模版方法模式(Template method)

1)抽象类/抽象模板(Abstract Class)

抽象模板类,负责给出一个算法的轮廓和骨架。它由一个模板方法和若干个基本方法构成。这些方法的定义如下。

① 模板方法:定义了算法的骨架,按某种顺序调用其包含的基本方法。

② 基本方法:是整个算法中的一个步骤,包含以下几种类型。

  • 抽象方法:在抽象类中声明,由具体子类实现。
  • 具体方法:在抽象类中已经实现,在具体子类中可以继承或重写它。
  • 钩子方法:在抽象类中已经实现,包括用于判断的逻辑方法和需要子类重写的空方法两种。

2)具体子类/具体实现(Concrete Class) 具体实现类,实现抽象类中所定义的抽象方法和钩子方法,它们是一个顶级逻辑的一个组成步骤。

应用场景:

  • 算法的整体步骤很固定,但其中个别部分易变时,这时候可以使用模板方法模式,将容易变的部分抽象出来,供子类实现。
  • 当多个子类存在公共的行为时,可以将其提取出来并集中到一个公共父类中以避免代码重复。首先,要识别现有代码中的不同之处,并且将不同之处分离为新的操作。最后,用一个调用这些新的操作的模板方法来替换这些不同的代码。
  • 当需要控制子类的扩展时,模板方法只在特定点调用钩子操作,这样就只允许在这些点进行扩展。

行为型模式 2 : 策略模式(Strategy)

定义:该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户。策略模式属于对象行为模式,它通过对算法进行封装,把使用算法的责任和算法的实现分割开来,并委派给不同的对象对这些算法进行管理。

策略模式的主要优点如下。

  • 多重条件语句不易维护,而使用策略模式可以避免使用多重条件语句,如 if...else 语句、switch...case 语句。
  • 策略模式提供了一系列的可供重用的算法族,恰当使用继承可以把算法族的公共代码转移到父类里面,从而避免重复的代码。
  • 策略模式可以提供相同行为的不同实现,客户可以根据不同时间或空间要求选择不同的。
  • 策略模式提供了对开闭原则的完美支持,可以在不修改原代码的情况下,灵活增加新算法。
  • 策略模式把算法的使用放到环境类中,而算法的实现移到具体策略类中,实现了二者的分离。

其主要缺点如下。

  • 客户端必须理解所有策略算法的区别,以便适时选择恰当的算法类。
  • 策略模式造成很多的策略类,增加维护难度。

策略模式的主要角色如下。

  • 抽象策略(Strategy)类:定义了一个公共接口,各种不同的算法以不同的方式实现这个接口,环境角色使用这个接口调用不同的算法,一般使用接口或抽象类实现。
  • 具体策略(Concrete Strategy)类:实现了抽象策略定义的接口,提供具体的算法实现。
  • 环境(Context)类:持有一个策略类的引用,最终给客户端调用。

策略模式在很多地方用到,如 Java SE 中的容器布局管理就是一个典型的实例,Java SE 中的每个容器都存在多种布局供用户选择。在程序设计中,通常在以下几种情况中使用策略模式较多。

  • 一个系统需要动态地在几种算法中选择一种时,可将每个算法封装到策略类中。
  • 一个类定义了多种行为,并且这些行为在这个类的操作中以多个条件语句的形式出现,可将每个条件分支移入它们各自的策略类中以代替这些条件语句。
  • 系统中各算法彼此完全独立,且要求对客户隐藏具体算法的实现细节时。
  • 系统要求使用算法的客户不应该知道其操作的数据时,可使用策略模式来隐藏与算法相关的数据结构。
  • 多个类只区别在表现行为不同,可以使用策略模式,在运行时动态选择具体要执行的行为。

在一个使用策略模式的系统中,当存在的策略很多时,客户端管理所有策略算法将变得很复杂,如果在环境类中使用策略工厂模式来管理这些策略类将大大减少客户端的工作复杂度

行为型模式 3 : 命令模式(Command)

定义:将一个请求封装为一个对象,使发出请求的责任和执行请求的责任分割开。这样两者之间通过命令对象进行沟通,这样方便将命令对象进行储存、传递、调用、增加与管理。

命令模式的主要优点如下。

  • 通过引入中间件(抽象接口)降低系统的耦合度。
  • 扩展性良好,增加或删除命令非常方便。采用命令模式增加与删除命令不会影响其他类,且满足“开闭原则”。
  • 可以实现宏命令。命令模式可以与组合模式结合,将多个命令装配成一个组合命令,即宏命令。
  • 方便实现 Undo 和 Redo 操作。命令模式可以与后面介绍的备忘录模式结合,实现命令的撤销与恢复。
  • 可以在现有命令的基础上,增加额外功能。比如日志记录,结合装饰器模式会更加灵活。

其缺点是:

  • 可能产生大量具体的命令类。因为每一个具体操作都需要设计一个具体命令类,这会增加系统的复杂性。
  • 命令模式的结果其实就是接收方的执行结果,但是为了以命令的形式进行架构、解耦请求与实现,引入了额外类型结构(引入了请求方与抽象命令接口),增加了理解上的困难。不过这也是设计模式的通病,抽象必然会额外增加类的数量,代码抽离肯定比代码聚合更加难理解。

命令模式包含以下主要角色。

  • 抽象命令类(Command)角色:声明执行命令的接口,拥有执行命令的抽象方法 execute()。
  • 具体命令类(Concrete Command)角色:是抽象命令类的具体实现类,它拥有接收者对象,并通过调用接收者的功能来完成命令要执行的操作。
  • 实现者/接收者(Receiver)角色:执行命令功能的相关操作,是具体命令对象业务的真正实现者。
  • 调用者/请求者(Invoker)角色:是请求的发送者,它通常拥有很多的命令对象,并通过访问命令对象来执行相关请求,它不直接访问接收者。

行为型模式 4 : 责任链模式(ChainOfResponsibility)

定义:为了避免请求发送者与多个请求处理者耦合在一起,于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链;当有请求发生时,可将请求沿着这条链传递,直到有对象处理它为止。

责任链模式是一种对象行为型模式,其主要优点如下。

  • 降低了对象之间的耦合度。该模式使得一个对象无须知道到底是哪一个对象处理其请求以及链的结构,发送者和接收者也无须拥有对方的明确信息。
  • 增强了系统的可扩展性。可以根据需要增加新的请求处理类,满足开闭原则。
  • 增强了给对象指派职责的灵活性。当工作流程发生变化,可以动态地改变链内的成员或者调动它们的次序,也可动态地新增或者删除责任。
  • 责任链简化了对象之间的连接。每个对象只需保持一个指向其后继者的引用,不需保持其他所有处理者的引用,这避免了使用众多的 if 或者 if···else 语句。
  • 责任分担。每个类只需要处理自己该处理的工作,不该处理的传递给下一个对象完成,明确各类的责任范围,符合类的单一职责原则。

其主要缺点如下。

  • 不能保证每个请求一定被处理。由于一个请求没有明确的接收者,所以不能保证它一定会被处理,该请求可能一直传到链的末端都得不到处理。
  • 对比较长的职责链,请求的处理可能涉及多个处理对象,系统性能将受到一定影响。
  • 职责链建立的合理性要靠客户端来保证,增加了客户端的复杂性,可能会由于职责链的错误设置而导致系统出错,如可能会造成循环调用。

职责链模式主要包含以下角色。

  • 抽象处理者(Handler)角色:定义一个处理请求的接口,包含抽象处理方法和一个后继连接。
  • 具体处理者(Concrete Handler)角色:实现抽象处理者的处理方法,判断能否处理本次请求,如果可以处理请求则处理,否则将该请求转给它的后继者。
  • 客户类(Client)角色:创建处理链,并向链头的具体处理者对象提交请求,它不关心处理细节和请求的传递过程。

行为型模式 5 : 状态模式(State)

定义:对有状态的对象,把复杂的“判断逻辑”提取到不同的状态对象中,允许状态对象在其内部状态发生改变时改变其行为。

优点:

  • 结构清晰,状态模式将与特定状态相关的行为局部化到一个状态中,并且将不同状态的行为分割开来,满足“单一职责原则”。
  • 将状态转换显示化,减少对象间的相互依赖。将不同的状态引入独立的对象中会使得状态转换变得更加明确,且减少对象间的相互依赖。
  • 状态类职责明确,有利于程序的扩展。通过定义新的子类很容易地增加新的状态和转换。

缺点:

  • 状态模式的使用必然会增加系统的类与对象的个数。
  • 状态模式的结构与实现都较为复杂,如果使用不当会导致程序结构和代码的混乱。
  • 状态模式对开闭原则的支持并不太好,对于可以切换状态的状态模式,增加新的状态类需要修改那些负责状态转换的源码,否则无法切换到新增状态,而且修改某个状态类的行为也需要修改对应类的源码。

状态模式包含以下主要角色。

  • 环境类(Context)角色:也称为上下文,它定义了客户端需要的接口,内部维护一个当前状态,并负责具体状态的切换。
  • 抽象状态(State)角色:定义一个接口,用以封装环境对象中的特定状态所对应的行为,可以有一个或多个行为。
  • 具体状态(Concrete State)角色:实现抽象状态所对应的行为,并且在需要的情况下进行状态切换。

应用:

  • 状态机、线程状态转换

行为型模式 6 : 观察者模式(Observer)

定义:指多个对象间存在一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。这种模式有时又称作发布-订阅模式、模型-视图模式。

优点:

  • 降低了目标与观察者之间的耦合关系,两者之间是抽象耦合关系。符合依赖倒置原则。
  • 目标与观察者之间建立了一套触发机制。

缺点:

  • 目标与观察者之间的依赖关系并没有完全解除,而且有可能出现循环引用。
  • 当观察者对象很多时,通知的发布会花费很多时间,影响程序的效率。

观察者模式的主要角色如下。

  • 抽象主题(Subject)角色:也叫抽象目标类,它提供了一个用于保存观察者对象的聚集类和增加、删除观察者对象的方法,以及通知所有观察者的抽象方法。
  • 具体主题(Concrete Subject)角色:也叫具体目标类,它实现抽象目标中的通知方法,当具体主题的内部状态发生改变时,通知所有注册过的观察者对象。
  • 抽象观察者(Observer)角色:它是一个抽象类或接口,它包含了一个更新自己的抽象方法,当接到具体主题的更改通知时被调用。
  • 具体观察者(Concrete Observer)角色:实现抽象观察者中定义的抽象方法,以便在得到目标的更改通知时更新自身的状态。

行为型模式 7 : 中介者模式(Mediator)

定义:定义一个中介对象来封装一系列对象之间的交互,使原有对象之间的耦合松散,且可以独立地改变它们之间的交互。中介者模式又叫调停模式,它是迪米特法则的典型应用。

优点:

  • 类之间各司其职,符合迪米特法则。
  • 降低了对象之间的耦合性,使得对象易于独立地被复用。
  • 将对象间的一对多关联转变为一对一的关联,提高系统的灵活性,使得系统易于维护和扩展。

其主要缺点是:中介者模式将原本多个对象直接的相互依赖变成了中介者和多个同事类的依赖关系。当同事类越多时,中介者就会越臃肿,变得复杂且难以维护。

中介者模式包含以下主要角色。

  • 抽象中介者(Mediator)角色:它是中介者的接口,提供了同事对象注册与转发同事对象信息的抽象方法。
  • 具体中介者(Concrete Mediator)角色:实现中介者接口,定义一个 List 来管理同事对象,协调各个同事角色之间的交互关系,因此它依赖于同事角色。
  • 抽象同事类(Colleague)角色:定义同事类的接口,保存中介者对象,提供同事对象交互的抽象方法,实现所有相互影响的同事类的公共功能。
  • 具体同事类(Concrete Colleague)角色:是抽象同事类的实现者,当需要与其他同事对象交互时,由中介者对象负责后续的交互。

行为型模式 8 : 迭代器模式(Iterator)

定义:提供一个对象来顺序访问聚合对象中的一系列数据,而不暴露聚合对象的内部表示,

优点:

  • 访问一个聚合对象的内容而无须暴露它的内部表示。
  • 遍历任务交由迭代器完成,这简化了聚合类。
  • 它支持以不同方式遍历一个聚合,甚至可以自定义迭代器的子类以支持新的遍历。
  • 增加新的聚合类和迭代器类都很方便,无须修改原有代码。
  • 封装性良好,为遍历不同的聚合结构提供一个统一的接口。

缺点:

  • 增加了类的个数,这在一定程度上增加了系统的复杂性。

迭代器模式主要包含以下角色。 抽象聚合(Aggregate)角色:定义存储、添加、删除聚合对象以及创建迭代器对象的接口。 具体聚合(ConcreteAggregate)角色:实现抽象聚合类,返回一个具体迭代器的实例。 抽象迭代器(Iterator)角色:定义访问和遍历聚合元素的接口,通常包含 hasNext()、first()、next() 等方法。 具体迭代器(Concretelterator)角色:实现抽象迭代器接口中所定义的方法,完成对聚合对象的遍历,记录遍历的当前位置。

行为型模式 9 : 访问者模式:(Visitor)

定义:将作用于某种数据结构中的各元素的操作分离出来封装成独立的类,使其在不改变数据结构的前提下可以添加作用于这些元素的新的操作,为数据结构中的每个元素提供多种访问方式。它将对数据的操作与数据结构进行分离。

优点:

  • 扩展性好。能够在不修改对象结构中的元素的情况下,为对象结构中的元素添加新的功能。
  • 复用性好。可以通过访问者来定义整个对象结构通用的功能,从而提高系统的复用程度。
  • 灵活性好。访问者模式将数据结构与作用于结构上的操作解耦,使得操作集合可相对自由地演化而不影响系统的数据结构。
  • 符合单一职责原则。访问者模式把相关的行为封装在一起,构成一个访问者,使每一个访问者的功能都比较单一。

缺点:

  • 增加新的元素类很困难。在访问者模式中,每增加一个新的元素类,都要在每一个具体访问者类中增加相应的具体操作,这违背了“开闭原则”。
  • 破坏封装。访问者模式中具体元素对访问者公布细节,这破坏了对象的封装性。
  • 违反了依赖倒置原则。访问者模式依赖了具体类,而没有依赖抽象类。

主要角色:

  • 抽象访问者(Visitor)角色:定义一个访问具体元素的接口,为每个具体元素类对应一个访问操作 visit() ,该操作中的参数类型标识了被访问的具体元素。
  • 具体访问者(ConcreteVisitor)角色:实现抽象访问者角色中声明的各个访问操作,确定访问者访问一个元素时该做什么。
  • 抽象元素(Element)角色:声明一个包含接受操作 accept() 的接口,被接受的访问者对象作为 accept() 方法的参数。
  • 具体元素(ConcreteElement)角色:实现抽象元素角色提供的 accept() 操作,其方法体通常都是 visitor.visit(this) ,另外具体元素中可能还包含本身业务逻辑的相关操作。
  • 对象结构(Object Structure)角色:是一个包含元素角色的容器,提供让访问者对象遍历容器中的所有元素的方法,通常由 List、Set、Map 等聚合类实现。

行为型模式 10 : 备忘录模式(Memento)

定义:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态,以便以后当需要时能将该对象恢复到原先保存的状态。该模式又叫快照模式。

优点:

  • 提供了一种可以恢复状态的机制。当用户需要时能够比较方便地将数据恢复到某个历史的状态。
  • 实现了内部状态的封装。除了创建它的发起人之外,其他对象都不能够访问这些状态信息。
  • 简化了发起人类。发起人不需要管理和保存其内部状态的各个备份,所有状态信息都保存在备忘录中,并由管理者进行管理,这符合单一职责原则。

缺点:

  • 资源消耗大。如果要保存的内部状态信息过多或者特别频繁,将会占用比较大的内存资源。

备忘录模式的主要角色如下。

  • 发起人(Originator)角色:记录当前时刻的内部状态信息,提供创建备忘录和恢复备忘录数据的功能,实现其他业务功能,它可以访问备忘录里的所有信息。
  • 备忘录(Memento)角色:负责存储发起人的内部状态,在需要的时候提供这些内部状态给发起人。
  • 管理者(Caretaker)角色:对备忘录进行管理,提供保存与获取备忘录的功能,但其不能对备忘录的内容进行访问与修改。

行为型模式 11 : 解释器模式(Interpreter)

定义:给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的实例。这种模式实现了文法表达式处理的接口,该接口解释一个特定的上下文。

优点:

  • 扩展性好。由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法。
  • 容易实现。在语法树中的每个表达式节点类都是相似的,所以实现其文法较为容易。

缺点:

  • 执行效率较低。解释器模式中通常使用大量的循环和递归调用,当要解释的句子较复杂时,其运行速度很慢,且代码的调试过程也比较麻烦。
  • 会引起类膨胀。解释器模式中的每条规则至少需要定义一个类,当包含的文法规则很多时,类的个数将急剧增加,导致系统难以管理与维护。
  • 可应用的场景比较少。在软件开发中,需要定义语言文法的应用实例非常少,所以这种模式很少被使用到。

解释器模式包含以下主要角色。

  • 抽象表达式(Abstract Expression)角色:定义解释器的接口,约定解释器的解释操作,主要包含解释方法 interpret()。
  • 终结符表达式(Terminal Expression)角色:是抽象表达式的子类,用来实现文法中与终结符相关的操作,文法中的每一个终结符都有一个具体终结表达式与之相对应。
  • 非终结符表达式(Nonterminal Expression)角色:也是抽象表达式的子类,用来实现文法中与非终结符相关的操作,文法中的每条规则都对应于一个非终结符表达式。
  • 环境(Context)角色:通常包含各个解释器需要的数据或是公共的功能,一般用来传递被所有解释器共享的数据,后面的解释器可以从这里获取这些值。
  • 客户端(Client):主要任务是将需要分析的句子或表达式转换成使用解释器对象描述的抽象语法树,然后调用解释器的解释方法,当然也可以通过环境角色间接访问解释器的解释方法。

About

程序设计的七大原则以及GoF的23种设计模式的Java代码实现

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published