Skip to content

garimacodes-del/SEO-Blogs-Post-Creation-Tool-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

High-level to low-level Architecture Pipeline

Converting high-level business requirements into low-level technical specifications import os

Define project details

project_name = "High-Level-to-Low-Level-Architecture-Tool" base_path = f"/mnt/data/{project_name}" os.makedirs(base_path, exist_ok=True)

File contents

files = { "README.md": """# High-Level to Low-Level Architecture Tool

An AI-powered automation tool that converts high-level business requirements into low-level technical specifications using NLP, ML, and templating.


Features

  • Extracts key entities from business requirements using NLP
  • Identifies system modules using machine learning
  • Generates schema designs in JSON format
  • Creates pseudo code using template-based generation

Pipeline Overview

  1. High-Level Requirement Analysis (NLP)
  2. Module Identification (Machine Learning)
  3. Schema Design (JSON Structure)
  4. Pseudo Code Generation (Template-based logic)

Example Code

High-Level Requirement Analysis (requirement_analysis.py)

import spacy

nlp = spacy.load("en_core_web_sm")
requirement = "Create a user registration system with username, email, and password."
doc = nlp(requirement)
entities = [(ent.text, ent.label_) for ent in doc.ents]
print(entities)

MODULE IDENTIFICATION: 

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier

vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(["Create a user registration system"])
y = ["User Registration"]

classifier = RandomForestClassifier()
classifier.fit(X, y)

predicted_modules = classifier.predict(vectorizer.transform(["Create a user registration system"]))
print(predicted_modules)
import json

SCHEME DESIGN :

schema = {
    "users": {
        "username": {"type": "string", "unique": True},
        "email": {"type": "string", "unique": True},
        "password": {"type": "string"}
    }
}
schema_json = json.dumps(schema, indent=4)
print(schema_json)

PSEUDO CODE GENERATOR :

template = \"\"\"
FUNCTION {module_name}
    INPUT {input_params}
    OUTPUT {output_params}
    LOGIC {logic}
END FUNCTION
\"\"\"

pseudo_code = template.format(
    module_name="UserRegistration",
    input_params="username, email, password",
    output_params="user_id",
    logic="INSERT INTO users (username, email, password) VALUES (username, email, password)"
)
print(pseudo_code)

PROJECT CODE GENERATOR :

High-Level-to-Low-Level-Architecture-Tool/
├── requirement_analysis.py
├── module_identifier.py
├── schema_generator.py
├── pseudo_code_generator.py
├── requirements.txt
├── report.md


└── README.md



About

The process of converting high-level business requirement into low level technical specifications

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published