A Python utility package for building Model Context Protocol (MCP) servers.
- mcp-utils
mcp-utils
provides utilities and helpers for building MCP-compliant servers in Python, with a focus on synchronous implementations using Flask. This package is designed for developers who want to implement MCP servers in their existing Python applications without the complexity of asynchronous code.
- Basic utilities for MCP server implementation
- Server-Sent Events (SSE) support
- Simple decorators for MCP endpoints
- Synchronous implementation
- HTTP protocol support
- Redis response queue
- Comprehensive Pydantic models for MCP schema
- Built-in validation and documentation
pip install mcp-utils
- Python 3.10+
- Pydantic 2
- Flask (for web server)
- Gunicorn (for production deployment)
- Redis (for response queue)
Here's a simple example of creating an MCP server:
from mcp_utils.core import MCPServer
from mcp_utils.schema import GetPromptResult, Message, TextContent, CallToolResult
# Create a basic MCP server
mcp = MCPServer("example", "1.0")
@mcp.prompt()
def get_weather_prompt(city: str) -> GetPromptResult:
return GetPromptResult(
description="Weather prompt",
messages=[
Message(
role="user",
content=TextContent(
text=f"What is the weather like in {city}?",
),
)
],
)
@mcp.tool()
def get_weather(city: str) -> str:
return "sunny"
For production use, you can use a simple Flask app with the mcp server and support Streamable HTTP from version 2025-06-18.
from flask import Flask, Response, url_for, request
# Create Flask app and MCP server with Redis queue
app = Flask(__name__)
mcp = MCPServer(
"example",
"1.0",
)
@app.route("/mcp", methods=["POST"])
def mcp_route():
response = mcp.handle_message(request.get_json())
return jsonify(response.model_dump(exclude_none=True))
if __name__ == "__main__":
app.run(debug=True)
For production use, you can integrate the MCP server with Flask, Redis, and SQLAlchemy for better message handling and database transaction management:
from flask import Flask, request
from sqlalchemy.orm import Session
from sqlalchemy import create_engine
# Create engine for PostgreSQL database
engine = create_engine("postgresql://user:pass@localhost/dbname")
# Create Flask app and MCP server with Redis queue
app = Flask(__name__)
mcp = MCPServer(
"example",
"1.0",
)
@app.route("/mcp", methods=["POST"])
def mcp_route():
with Session(engine) as session:
try:
response = mcp.handle_message(request.get_json())
session.commit()
except:
session.rollback()
raise
else:
return jsonify(response.model_dump(exclude_none=True))
if __name__ == "__main__":
app.run(debug=True)
For a more comprehensive example including logging setup and session management, check out the example Flask application in the repository.
Gunicorn is a better approach to running even locally. To run the app with gunicorn
from gunicorn.app.base import BaseApplication
class FlaskApplication(BaseApplication):
def __init__(self, app, options=None):
self.options = options or {}
self.application = app
super().__init__()
def load_config(self):
config = {
key: value
for key, value in self.options.items()
if key in self.cfg.settings
}
for key, value in config.items():
self.cfg.set(key.lower(), value)
def load(self):
return self.application
if __name__ == "__main__":
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter("[%(asctime)s] [%(levelname)s] %(name)s: %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
options = {
"bind": "0.0.0.0:9000",
"workers": 1,
"worker_class": "gevent",
"loglevel": "debug",
}
FlaskApplication(app, options).run()
- Edit MCP settings and add to configuration
{
"mcpServers": {
"server-name": {
"url": "http://localhost:9000/mcp"
}
}
}
As of this writing, Claude Desktop does not support MCP through SSE and only supports stdio. To connect Claude Desktop with an MCP server, you'll need to use mcp-proxy.
Configuration example for Claude Desktop:
{
"mcpServers": {
"weather": {
"command": "/Users/yourname/.local/bin/mcp-proxy",
"args": ["http://127.0.0.1:9000/sse"]
}
}
}
To install MCP Proxy for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install mcp-proxy --client claude
The stable version of the package is available on the PyPI repository. You can install it using the following command:
# Option 1: With uv (recommended)
uv tool install mcp-proxy
# Option 2: With pipx (alternative)
pipx install mcp-proxy
Once installed, you can run the server using the mcp-proxy
command.
Contributions are welcome! Please feel free to submit a Pull Request.
- MCP Python SDK - The official async Python SDK for MCP
- mcp-proxy - A proxy tool to connect Claude Desktop with MCP servers
MIT License
The MCP Inspector is a useful tool for testing and debugging MCP servers. It provides a web interface to inspect and test MCP server endpoints.
Install MCP Inspector using npm:
npm install -g @modelcontextprotocol/inspector
- Start your MCP server (e.g., the Flask example above)
- Run MCP Inspector:
git clone git@github.com:modelcontextprotocol/inspector.git
cd inspector
npm run build
npm start
- Open your browser and navigate to
http://127.0.0.1:6274/
- Enter your MCP server URL (e.g.,
http://localhost:9000/sse
) - Use the inspector to:
- Change transport type to SSE
- Test server connections
- Monitor SSE events
- Send test messages
- Debug responses
This tool is particularly useful during development to ensure your MCP server implementation is working correctly and complies with the protocol specification.