📖 Documentation · ⚙️ Tutorials | |
---|---|
CI/CD | |
Code | |
Community | |
Paper |
You can install via pip with:
pip install pyrregular
For third party models use:
pip install pyrregular[models]
If you want to see all the datasets available, you can use the list_datasets
function:
from pyrregular import list_datasets
df = list_datasets()
To load a dataset, you can use the load_dataset
function. For example, to load the "Garment" dataset, you can do:
from pyrregular import load_dataset
df = load_dataset("Garment.h5")
The dataset is saved in the default os cache directory, which can be found with:
import pooch
print(pooch.os_cache("pyrregular"))
The repository is hosted at: https://huggingface.co/datasets/splandi/pyrregular/
To use the dataset for classification, you can just "densify" it:
from pyrregular import load_dataset
df = load_dataset("Garment.h5")
X, _ = df.irr.to_dense()
y, split = df.irr.get_task_target_and_split()
X_train, X_test = X[split != "test"], X[split == "test"]
y_train, y_test = y[split != "test"], y[split == "test"]
# We have ready-to-go models from various libraries:
from pyrregular.models.rocket import rocket_pipeline
model = rocket_pipeline
model.fit(X_train, y_train)
model.score(X_test, y_test)
There are several pipelines available in pyrregular.models
:
💾 Library | 📖 Source | 🔗 Pipeline | ℹ️ Type |
---|---|---|---|
aeon |
Spinnato et al. (2024) | borf | dictionary-based transform + lgbm classifier |
aeon |
rifc | interval-based transform + lgbm classifier | |
diffrax |
Kidger et al. (2020) | ncde | neural controlled differential equations |
pypots |
Cao et al. (2018) | brits | bidirectional recurrent imputation network |
pypots |
Che et al. (2018) | grud | gated recurrent unit with decay |
pypots |
Zhang et al. (2021) | raindrop | graph neural network |
pypots |
Du et al. (2023) | saits | self-attention-based imputation transformer |
pypots |
Wu et al. (2022) | timesnet | temporal 2d-variation transformer |
sktime |
Ke et al. (2017) | lgbm | gradient boosted tree |
sktime |
Dempster et al. (2021) | rocket | kernel-based transform + lgbm classifier |
sktime |
Bagheri et al. (2016) | svm | support vector machine with distance kernel |
tslearn |
Sakoe & Chiba (1978) | knn | distance-based with dynamic time warping |
📈 Dataset | 📖 Source |
---|---|
Alembics Bowls Flasks | Spinnato & Landi, 2025 |
AllGestureWiimoteX | Guna et al., 2014 |
AllGestureWiimoteY | Guna et al., 2014 |
AllGestureWiimoteZ | Guna et al., 2014 |
Animals | Ferrero et al., 2018 |
AsphaltObstaclesCoordinates | Souza, 2018 |
AsphaltPavementTypeCoordinates | Souza, 2018 |
AsphaltRegularityCoordinates | Souza, 2018 |
CharacterTrajectories | Williams et al., 2006 |
DodgerLoopDay | Ihler et al., 2006 |
DodgerLoopGame | Ihler et al., 2006 |
DodgerLoopWeekend | Ihler et al., 2006 |
Geolife | Zheng et al., 2009; Zheng et al., 2008; Zheng et al., 2010 |
GestureMidAirD1 | Caputo et al., 2018 |
GestureMidAirD2 | Caputo et al., 2018 |
GestureMidAirD3 | Caputo et al., 2018 |
GesturePebbleZ1 | Mezari & Maglogiannis, 2018 |
GesturePebbleZ2 | Mezari & Maglogiannis, 2018 |
GPS Data of Seabirds | Browning et al., 2018 |
InsectWingbeat | Chen et al., 2014 |
JapaneseVowels | Kudo et al., 1999 |
Localization Data for Person Activity | Vidulin et al., 2010 |
MelbournePedestrian | City of Melbourne, 2019 |
MIMIC-III Clinical Database (Demo) | Johnson et al., 2016; Johnson et al., 2019; Goldberger et al., 2000 |
PAMAP2 Physical Activity Monitoring | Reiss & Stricker, 2012 |
PhysioNet 2012 | Silva et al., 2012 |
PhysioNet 2019 | Reyna et al., 2020 |
PickupGestureWiimoteZ | Guna et al., 2014 |
PLAID | Gao et al., 2014 |
Productivity Prediction of Garment Employees | Imran et al., 2021 |
ShakeGestureWiimoteZ | Guna et al., 2014 |
SpokenArabicDigits | Hammami & Bedda, 2010 |
Taxi | Moreira-Matias et al., 2013 |
Vehicles | Chorochronos Archive, 2019 |
If you use this package in your research, please cite the following paper:
@misc{spinnato2025pyrregular,
title={PYRREGULAR: A Unified Framework for Irregular Time Series, with Classification Benchmarks},
author={Francesco Spinnato and Cristiano Landi},
year={2025},
eprint={2505.06047},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2505.06047},
}