Skip to content

CaliFree3DLane: Calibration Free Spatio-Temporal BEV Representation for Monocular 3D Lane Detection

License

Notifications You must be signed in to change notification settings

flyingGH/CaliFree3DLane

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

CaliFree3DLane

  • 🚘 The complete code will be released after work is accepted

Environment Setup

  • We develop with PyTorch 1.8 and recommend you to use Anaconda to create a conda environment before installing the dependencies
pip install torch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0
cd models/ops/
bash make.sh
# unit test (should see all checking is True)
python test.py
  • For other dependencies
pip install -r requirement.txt

Training and evaluation on Apollo 3D Lane Synthetic

  • How to train:
    1. Please download Apollo 3D Lane Synthetic and modify the configuration in the /tools/apollo_config.py
    2. Execute the following code:
cd tools
python3 train_apollo.py
  • How to evaluate:
    1. Please modify the configuration in the /tools/val_apollo.py
    2. Execute the following code:
python val_apollo.py

Training and evaluation on OpenLane

  • How to train:
    1. Please download OpenLane and modify the configuration in the /tools/apollo_config.py
    2. Execute the following code:
cd tools
python3 train_openlane.py
  • How to evaluate:
    1. Please modify the configuration in the /tools/val_apollo.py
    2. Execute the following code:
python val_openlane.py

Benchmark

Results of different models on Apollo 3D Lane Synthetic (Balanced Scence)

  • In/Extrinsics
Method F-Score X error near X error far Z error near Z error far
3D-LaneNet 86.4 0.068 0.477 0.015 0.202
Gen-LaneNet 88.1 0.061 0.486 0.012 0.214
CLGO 91.9 0.061 0.361 0.029 0.25
PersFormer 92.9 0.054 0.356 0.010 0.234
Anchor3DLane 95.4 0.045 0.300 0.016 0.223
BEV-LaneDet 98.7 0.016 0.242 0.020 0.216
Ours 97.9 0.027 0.248 0.021 0.221
  • without In/Extrinsics
Method F-Score X error near X error far Z error near Z error far
BEV-LaneDet 96.8 0.035 0.292 0.033 0.250
Ours 97.9 0.031 0.261 0.030 0.243

Results of different models on OpenLane dataset

  • In/Extrinsics
Method F-Score X error near X error far Z error near Z error far
3D-LaneNet 44.1 0.479 0.572 0.367 0.443
Gen-LaneNet 32.5 0.591 0.684 0.411 0.521
PersFormer 50.5 0.485 0.553 0.364 0.431
Anchor3DLane 54.3 0.275 0.310 0.105 0.135
BEV-LaneDet 58.4 0.309 0.659 0.244 0.631
Ours 58.8 0.273 0.687 0.201 0.626
Method All Up&
Down
Curve Extreme
Weather
Night Intersection Merge&
Split
PersFormer 42.0 40.7 46.3 43.7 36.1 28.9 41.2
Anchor3DLane 54.3 47.2 58.0 52.7 48.7 45.8 51.7
BEV-LaneDet 58.4 48.7 63.1 53.4 53.4 50.3 53.7
Ours 58.8 51.8 62.9 56.4 54.2 50.9 53.5
  • without In/Extrinsics
Method F-Score X error near X error far Z error near Z error far
BEV-LaneDet 54.7 0.346 0.769 0.253 0.709
Ours 57.0 0.306 0.761 0.227 0.708
Method All Up&
Down
Curve Extreme
Weather
Night Intersection Merge&
Split
BEV-LaneDet 54.7 47.4 61.4 49.2 49.7 46.4 49.9
Ours 57.0 48.9 62.3 54.8 52.0 50.2 52.1

Visualization

About

CaliFree3DLane: Calibration Free Spatio-Temporal BEV Representation for Monocular 3D Lane Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages