Skip to content

fjyu95/SfM-free-splatting

Repository files navigation

stellar_engine_web_reconstruction

室内视频流高质量精确3DGS生成

Installation

1.Clone stellar_engine_web_reconstruction

git clone root@192.168.0.105:gs_scene/stellar_engine_web_reconstruction.git
cd stellar_engine_web_reconstruction

2.Create the environment

conda create -n stellar3d python=3.10.13 cmake=3.14.0 -y
conda activate stellar3d
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia  # use the correct version of cuda for your system
pip install -r requirements.txt
pip install InstantSplat/submodules/simple-knn
pip install InstantSplat/submodules/diff-gaussian-rasterization
pip install InstantSplat/submodules/fused-ssim
pip install compressed_gaussians/submodules/diff-gaussian-rasterization
pip install compressed_gaussians/submodules/weighted_distance

3.Optional but highly suggested, compile the cuda kernels for RoPE (as in CroCo v2).

# DUST3R relies on RoPE positional embeddings for which you can compile some cuda kernels for faster runtime.
cd InstantSplat/croco/models/curope/
python setup.py build_ext --inplace

usage

python stellar_web_recon_pipeline.py [-h] [-i INPUT] [-o OUTPUT] [-log LOG_DIR] [-downsample PCD_DOWNSAMPLE_RATIO] [-adc] [-iter GS_TRAIN_ITER]
                                     [--save_iterations SAVE_ITERATIONS [SAVE_ITERATIONS ...]] [-v]
                                     
options:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        input video path,default /data/gs_scene/stellar_web_recon/videos/hcf_video3.mp4
  -o OUTPUT, --output OUTPUT
                        output 3d model root dir,default /data/gs_scene/stellar_web_recon
  -log LOG_DIR, --log_dir LOG_DIR
                        logfile directory
  -downsample PCD_DOWNSAMPLE_RATIO, --pcd_downsample_ratio PCD_DOWNSAMPLE_RATIO
                        pointcloud downsample ratio, default 1
  -adc, --densification
                        Adaptive Density Control (ADC)
  -iter GS_TRAIN_ITER, --gs_train_iter GS_TRAIN_ITER
                        gaussian splatting train iterations,default 500
  --save_iterations SAVE_ITERATIONS [SAVE_ITERATIONS ...]
  -v, --verbose         verbose

About

Large-scale accurate indoor gaussian splatting 3D reconstruction based on video stream

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published