pip install torch transformers==4.47.1 accelerate deepspeed psutil pandas numpy wandb
accelerate launch train.py \
--model_name Qwen2.5-Math-7B \
--model_path /path/to/Qwen2.5-Math-7B \
--train_data dataset/1shot_rlvr/pi1_r1280.parquet \
--effective_batch 64 \
--micro_batch_size 2 \
--temperature 0.5 \
--learning_rate 2e-5 \
--max_steps 50 \
--log_steps 1 \
--save_steps 1 \
--run_name one_shot \
--wandb_project one-shot-em
accelerate launch train.py \
--model_name Qwen2.5-Math-7B \
--model_path /path/to/Qwen2.5-Math-7B \
--train_data dataset/numina/numina_00.parquet \
--effective_batch 64 \
--micro_batch_size 2 \
--temperature 0.5 \
--learning_rate 2e-5 \
--max_steps 50 \
--log_steps 1 \
--save_steps 1 \
--run_name multi_shot \
--wandb_project one-shot-em
cd Qwen2.5-Eval/evaluation
bash sh/eval_all_math.sh
Our dataset references and builds upon the following open-source contributions:
- NuminaMath-CoT
- DeepScaler
- One-shot RLVR – for data selection strategies
- Qwen2.5-Eval – for evaluation benchmarks
We sincerely thank the authors and maintainers of these projects for their excellent contributions to the research community!
@misc{gao2025oneshotentropyminimization,
title={One-shot Entropy Minimization},
author={Zitian Gao and Lynx Chen and Joey Zhou and Bryan Dai},
year={2025},
eprint={2505.20282},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.20282},
}