A Client Side Browser-Based AI Training Playground.
- 100% client‑side: No server required; privacy by design.
- Fast training: Uses MobileNet‑V2 as a feature extractor + KNN classifier for instant incremental learning.
- Top‑k prediction view: Shows predicted label and per‑class confidences.
- Feature extractor: [@tensorflow-models/mobilenet] provides embeddings.
- Classifier: [@tensorflow-models/knn-classifier] stores examples and predicts via nearest neighbors.
- Performance: Training scales with example count; memory is bounded by image + embedding sizes.
- Privacy: All computation and data stay in the tab (no network I/O of user images).
DATA_DIRECTORY ├── CLASS_NAME_1 │ ├── image_01.png │ ├── image_02.png │ ├── image_03.png │ ├── ... ├── CLASS_NAME_2 │ ├── image_01.png │ ├── image_02.png │ ├── image_03.png │ ├── ... ├── CLASS_NAME_3 │ ├── image_01.png │ ├── image_02.png │ ├── image_03.png │ ├── ... ...
# set environment variables:
export REACT_NATIVE_PACKAGER_HOSTNAME=${YOUR_HOST}
# Build the image
docker compose build
# Run the container
docker compose updocker compose \
-f docker-compose.test.yml up \
--build --exit-code-from \
frontend_test- Apache License 2.0
