Skip to content

eunchi-kim/Bayesian_inference_fourJV

Repository files navigation

Bayesian inference of material parameters in organic solar cells

Graphical abstract

This repository contains code for Bayesian inference of material parameters from JV curves in organic solar cells.

Note:
Due to licensing issues for the drift-diffusion simulator, the corresponding code is omitted.

For details, see the main paper https://doi.org/10.48550/arXiv.2506.13308: https://doi.org/10.1002/solr.202500648:


📁 Example Data

Large example datasets (>1GB) used in this project are hosted on Zenodo due to GitHub size limits.

Download data:
https://zenodo.org/record/15480770

Description:

  • exp_data_example_d171nm_4illus_0p02-0p84V.h5: Raw illumination-dependent JV curves (active blend - T1:BTP-4F-12)
  • example_d171nm_8_param_train_test.h5: Train and test dataset for building the NN model
  • example_d171nm_8_paramscaler.joblib: Standardization tool for NN model input (material parameters)
  • y1/example_d171nm_8_param_y1_trained_model.h5: Trained NN model for shifted JV curves
  • y2/example_d171nm_8_param_y2_trained_model.h5: Trained NN model for short-circuit current densities

How to use:

  1. Download the required files from Zenodo.
  2. Extract them into the repository folder.
  3. Use the pdf_analysis_example.ipynb notebook to infer parameters from experimental or NN-generated data and visualize the results.

Requirements

  • Python 3.8+
  • numpy, matplotlib, tensorflow, pymoo, ...

Install all dependencies using:

pip install -r requirements.txt

About

Parameter inference of material parameters from current-voltage curves in organic solar cells

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published