This repository contains code for Bayesian inference of material parameters from JV curves in organic solar cells.
Note:
Due to licensing issues for the drift-diffusion simulator, the corresponding code is omitted.
For details, see the main paper https://doi.org/10.48550/arXiv.2506.13308: https://doi.org/10.1002/solr.202500648:
Large example datasets (>1GB) used in this project are hosted on Zenodo due to GitHub size limits.
Download data:
https://zenodo.org/record/15480770
Description:
exp_data_example_d171nm_4illus_0p02-0p84V.h5
: Raw illumination-dependent JV curves (active blend - T1:BTP-4F-12)example_d171nm_8_param_train_test.h5
: Train and test dataset for building the NN modelexample_d171nm_8_paramscaler.joblib
: Standardization tool for NN model input (material parameters)y1/example_d171nm_8_param_y1_trained_model.h5
: Trained NN model for shifted JV curvesy2/example_d171nm_8_param_y2_trained_model.h5
: Trained NN model for short-circuit current densities
How to use:
- Download the required files from Zenodo.
- Extract them into the repository folder.
- Use the
pdf_analysis_example.ipynb
notebook to infer parameters from experimental or NN-generated data and visualize the results.
- Python 3.8+
- numpy, matplotlib, tensorflow, pymoo, ...
Install all dependencies using:
pip install -r requirements.txt