Skip to content

ets-berkeley-edu/chabot

Repository files navigation

Chabot

RTL Chabot platform with RAG capabilities. Uses Fast API backend.

Prerequisites

  • Python 3.11+
  • PostgreSQL 13+
  • AWS account with Bedrock access

Installation

  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  
  1. Install dependencies:
pip install -r requirements.txt
  1. Copy the environment file and update the values:
cp .env.example .env
  1. Create the database:
createuser chatbot --no-createdb --no-superuser --no-createrole --pwprompt
createdb chatbot

Development

Running the Application

  1. Start the backend server:
uvicorn backend.app.main:app --reload
  1. In a new terminal, start the frontend:
cd frontend
streamlit run app/main.py

Testing

Run all tests using tox including linters

tox

Code Quality

The project uses Ruff for code quality checks:

# Run them separately:
# Check linting
ruff check backend frontend

# Format code
ruff format backend frontend

About

RTL Chabot platform

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages