Automated setup for RL-Swarm with GPU detection and optimized configurations.
# Clone the repository
cd $HOME && [ -d rl-swarm ] && rm -rf rl-swarm
git clone https://github.com/gensyn-ai/rl-swarm.git
cd rl-swarm
# Create virtual environment and run
python3 -m venv .venv
source .venv/bin/activate
./run_rl_swarm.sh
If you don't have a local GPU:
- Visit Quick Pod Website
- Sign up using email address
- Go to your email and verify your Quick Pod account
- Click on Add button in the corner to deposit fund
- You can deposit using crypto currency (from your EVM wallet) or using Credit Card
- Go to template section and select CUDA 12.6
- Clone the CUDA 12.6 template
- Edit the Docker Options as shown below:
-p 8888:8888 -p 3000:3000
- Click on Select GPU and search RTX 4090 and choose it
- Change your template via My Template Section
- Choose a GPU and click on Create POD button
- Your GPU server will be deployed soon
- Click on Connect option and then choose Connect to web terminal
For remote access:
wget https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb
sudo dpkg -i cloudflared-linux-amd64.deb
cloudflared tunnel --url http://localhost:3000
# Install sudo
apt update && apt install -y sudo
# Install other dependencies
sudo apt update && sudo apt install -y python3 python3-venv python3-pip curl wget screen git lsof
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt update && sudo apt install -y yarn
# Install Node.js and npm if not installed already
curl -sSL https://raw.githubusercontent.com/zunxbt/installation/main/node.sh | bash
# Clone this repository
cd $HOME && [ -d rl-swarm ] && rm -rf rl-swarm
git clone https://github.com/gensyn-ai/rl-swarm.git
cd rl-swarm
# Create a screen session
screen -S gensyn
# Run the swarm
python3 -m venv .venv && source .venv/bin/activate && ./run_rl_swarm.sh
- Automatic GPU Detection: Detects your NVIDIA GPU and suggests optimal configurations
- Smart Configuration Selection: Uses specialized configs from
special configs/
directory - VRAM-Optimized: Prevents VRAM errors with GPU-specific configurations
- Flexible Setup: Choose between automatic (recommended) or manual setup modes
- NVIDIA GPU with CUDA support
- Ubuntu/Debian-based system (or WSL)
- Internet connection
# Clone the repository
cd $HOME && [ -d rl-swarm ] && rm -rf rl-swarm
git clone https://github.com/gensyn-ai/rl-swarm.git
cd rl-swarm
# Create virtual environment and run
python3 -m venv .venv
source .venv/bin/activate
./run_rl_swarm.sh
If you don't have a local GPU, you can rent one from Quick Pod:
- Visit Quick Pod Website
- Sign up using your email address
- Verify your account via email
- Add funds using cryptocurrency or credit card
- Go to Template Section and select CUDA 12.6
- Clone the CUDA 12.6 template
- Edit Docker Options:
-p 8888:8888 -p 3000:3000
- Select GPU: Search for RTX 4090 and choose it
- Save template via My Template Section
- Click Create POD to deploy your GPU server
- Click Connect β Connect to web terminal
- Install dependencies:
# Install sudo and update system
apt update && apt install -y sudo
# Install Python, Node.js, and other dependencies
sudo apt update && sudo apt install -y python3 python3-venv python3-pip curl wget screen git lsof
curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/apt/sources.list.d/yarn.list
sudo apt update && sudo apt install -y yarn
# Install Node.js
curl -sSL https://raw.githubusercontent.com/zunxbt/installation/main/node.sh | bash
# Clone and run RL-Swarm
cd $HOME && [ -d rl-swarm ] && rm -rf rl-swarm
git clone https://github.com/gensyn-ai/rl-swarm.git
cd rl-swarm
# Create screen session and run
screen -S gensyn
python3 -m venv .venv && source .venv/bin/activate && ./run_rl_swarm.sh
For remote access, you can set up a Cloudflare tunnel:
# Install Cloudflare tunnel
wget https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb
sudo dpkg -i cloudflared-linux-amd64.deb
# Create tunnel
cloudflared tunnel --url http://localhost:3000
- Run the script:
./run_rl_swarm.sh
- Choose setup mode:
- Automatic (Recommended): Let the script detect your GPU and suggest optimal settings
- Manual: Configure settings manually
- Follow the prompts to select:
- Testnet connection
- Swarm type (Math or Math Hard)
- Model parameters (0.5B, 1.5B, 7B, 32B, or 72B)
The automatic setup:
- Detects your NVIDIA GPU using
nvidia-smi
- Searches for GPU-specific configurations in
hivemind_exp/configs/gpu/special configs/
- Suggests optimal swarm type based on GPU capabilities
- Lists available model sizes for your GPU
- Uses the selected configuration to prevent VRAM errors
rl-swarm/
βββ hivemind_exp/
β βββ configs/
β βββ gpu/
β βββ special configs/ # GPU-specific configurations
βββ run_rl_swarm.sh # Main setup script
βββ README.md # This file
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
This project is licensed under the same license as the original RL-Swarm project.
- Original RL-Swarm project by Gensyn
- GPU configurations optimized for various NVIDIA cards