Negative Ties Highlight Hidden Extremes in Social Media Polarization
Open source data and code for the research paper:
E. Candellone,* S. A. Babul,* Ö. Togay, A. Bovet, and J. Garcia-Bernardo
Negative Ties Highlight Hidden Extremes in Social Media Polarization
Pre-print: https://arxiv.org/abs/2501.05590
*shared first authors
/bertopic/
: BERTopic intermediate results and model specifications/data/
: CA and SHEEP embeddings and network files/figures/
: paper figures/hsbm/
: TM-hSBM intermediate results and model specifications/ideology_twitter/
: validation with Twitter data and PoliticalWatch/notebooks/
1_topic_modelling.ipynb
: script to perform BERTopic and TM-hSBM topic modelling2_compare_hsbm_bert.ipynb
: comparison of the two methods to have robust topics3a_create_attitudes.ipynb
: create network embeddings using SHEEP and CA3b_sheep_null_model.ipynb
: null model to compare SHEEP and CA4_figures_paper.ipynb
: code to reproduce the figures of the paper
/src/
create_snapshot.py
: code to extract and clean data from scraped webpage.topicmodelling.py
helper functions for topic modelling.meneame.py
,s3_create_attitudes.py
: helper functions for creating embeddings.
- Create conda environment:
conda env create -f polarization.yml
conda activate polarization
- Run the notebooks
- Corresponding authors: Elena Candellone and Shazia Babul