Skip to content

dev-anas-tahir/Netflix_Analysis_Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Netflix Analysis

πŸ“Œ Project Overview

This project analyzes the Netflix Titles Dataset, focusing on data cleaning, preprocessing, and visualizations to uncover insights about Netflix's content.

πŸš€ Features

  • Data Cleaning & Handling Missing Values
  • Exploratory Data Analysis (EDA) with Visualizations
  • Trend Analysis on Netflix's Content Catalog
  • Insights on Movie & TV Show Releases Over Time
  • Genre and Country-based Analysis
  • Recommendation Engine for Personalized Content Suggestions

πŸ“‚ Dataset

  • Source: Netflix Titles Dataset (netflix_titles.csv)
  • Columns: Title, Director, Cast, Country, Release Year, Rating, Duration, etc.

πŸ› οΈ Installation & Setup

  1. Clone the repository:
    git clone https://github.com/your-username/netflix-analysis.git
    cd netflix-analysis
  2. Run the Jupyter Notebook:
    jupyter notebook netflix_titles.ipynb

πŸ€– Recommendation Engine

The project includes a content-based recommendation engine that suggests similar movies and TV shows based on genres, cast, and other metadata.

Sample Code for Recommendations:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def get_recommendations(title, df):
    tfidf = TfidfVectorizer(stop_words='english')
    tfidf_matrix = tfidf.fit_transform(df['description'].fillna(''))
    cosine_sim = cosine_similarity(tfidf_matrix, tfidf_matrix)
    indices = pd.Series(df.index, index=df['title']).drop_duplicates()
    idx = indices[title]
    sim_scores = list(enumerate(cosine_sim[idx]))
    sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
    sim_scores = sim_scores[1:6]
    return df['title'].iloc[[i[0] for i in sim_scores]]

πŸ“Š Screenshots

Here are some visual insights from the analysis:

Screenshot 1 Screenshot 2 Screenshot 3

πŸ“œ License

This project is licensed under the MIT License.


Author: Anas Waleed Tahir

GitHub: anasengence

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published