Skip to content

deep-spin/interp_llm

Repository files navigation

Analyzing Context Contributions in LLM-based Machine Translation

Abstract

Large language models (LLMs) have achieved state-of-the-art performance in machine translation (MT) and demonstrated the ability to leverage in-context learning through few-shot examples. However, the mechanisms by which LLMs use different parts of the input context remain largely unexplored. In this work, we provide a comprehensive analysis of context utilization in MT, studying how LLMs use various context parts, such as few-shot examples and the source text, when generating translations. We highlight several key findings: (1) the source part of few-shot examples appears to contribute more than its corresponding targets, irrespective of translation direction; (2) finetuning LLMs with parallel data alters the contribution patterns of different context parts; and (3) there is a positional bias where earlier few-shot examples have higher contributions to the translated sequence. Finally, we demonstrate that inspecting anomalous context contributions can potentially uncover pathological translations, such as hallucinations. Our findings shed light on the internal workings of LLM-based MT which go beyond those known for standard encoder-decoder MT models.

This is a work in progress. The code will be released soon.

Citation

If you found our work/code useful, please consider citing:

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •