BitmaskVec is a vector that pairs bitmasks with T. Bitmasks u8 through u128 are supported.
Items can be added with or without supplying bitmasks. The bitmask will default to zero if not supplied.
Filtering iterator using bitmasks:
// filtering by bitmask
fn main() {
use cj_bitmask_vec::prelude::*;
let mut v = BitmaskVec::<u8, i32>::new();
// Bitmasks hold whatever meaning the developer gives them.
// In this example any u8 is a valid bitmask.
// (bitmask) (T)
v.push_with_mask(0b00000000, 100);
v.push_with_mask(0b00000010, 101);
v.push_with_mask(0b00000011, 102);
v.push_with_mask(0b00000100, 103);
v.push_with_mask(0b00000110, 104);
v.push(105); // <- the bitmask will default to zero
// or an easier way to add items
v += (0b00000000, 106);
v += (0b00010000, 107);
v += (0b00100000, 108);
v += (0b00000100, 109);
v += (0b10000001, 110);
v += (0b00000001, 111);
v += (0b00000000, 112);
v += 113; // <- bitmask will default to zero
assert_eq!(v[6], 106);
// here we're going to iterate over all items that have bitmask bit 1 set
let mut count = 0;
let mut iter = v.iter_with_mask();
// (mask with bit 1 set)
// V
while let Some(pair) = iter.filter_mask(&0b00000010) {
// only items 101, 102, and 104 in the Vec above have
// bitmask bit 1 set.
assert!([101, 102, 104].contains(&pair.item));
count += 1;
}
assert_eq!(count, 3);
}
Iterating over T:
fn main() {
use cj_bitmask_vec::prelude::*;
let mut v = BitmaskVec::<u8, i32>::new();
v.push_with_mask(0b00000000, 100);
v.push_with_mask(0b00000010, 101);
v.push_with_mask(0b00000010, 102);
v.push_with_mask(0b00000110, 103);
v.push_with_mask(0b00000001, 104);
v.push_with_mask(0b00000001, 105);
v.push_with_mask(0b00000000, 106);
let mut total = 0;
// iter excludes the bitmask
for x in v.iter() {
total += x;
}
assert_eq!(total, 721);
}
Iterating over T and bitmask:
fn main() {
use cj_bitmask_vec::prelude::*;
use cj_common::prelude::CjMatchesMask;
let mut v = BitmaskVec::<u8, i32>::new();
v.push_with_mask(0b00000000, 100);
v.push_with_mask(0b00000010, 101);
v.push_with_mask(0b00000010, 102);
v.push_with_mask(0b00000110, 103);
v.push_with_mask(0b00000001, 104);
v.push_with_mask(0b00000001, 105);
v.push_with_mask(0b00000000, 106);
let mut total = 0;
for x in v.iter_with_mask() {
if x.matches_mask(&0b00000010) {
total += x.item;
}
}
assert_eq!(total, 306);
}
Mutably iterating over T:
fn main() {
use cj_bitmask_vec::prelude::*;
let mut v = BitmaskVec::<u8, i32>::new();
v.push_with_mask(0b00000000, 100);
v.push_with_mask(0b00000010, 101);
v.push_with_mask(0b00000010, 102);
v.push_with_mask(0b00000100, 103);
v.push_with_mask(0b00000011, 104);
v.push_with_mask(0b00000001, 105);
v.push_with_mask(0b00000000, 106);
let mut total = 0;
// iter_mut excludes the bitmask
let x = v.iter_mut();
for z in x {
// here we modify T
total += *z;
*z *= 2;
}
// verify the changes from above
let mut total_2 = 0;
let x = v.iter();
for z in x {
total_2 += *z;
}
assert_eq!(total_2, total * 2);
}
Mutably iterating over T and bitmask:
fn main() {
use cj_bitmask_vec::prelude::*;
use cj_common::prelude::{Bitflag, CjMatchesMask};
let mut v = BitmaskVec::<u8, i32>::new();
v.push_with_mask(0b00000000, 100);
v.push_with_mask(0b00000010, 101);
v.push_with_mask(0b00000010, 102);
v.push_with_mask(0b00000100, 103);
v.push_with_mask(0b00000011, 104);
v.push_with_mask(0b00000001, 105);
v.push_with_mask(0b00000000, 106);
let mut total = 0;
let x = v.iter_with_mask_mut();
for z in x {
total += z.item;
// here we modify T
z.item *= 2;
// here we modify the 8th bit of the bitmask.
// - Note that set_bit() only modifies a single bit,
// leaving the rest of the bitmask unchanged.
z.bitmask.set_bit(7, true);
}
// verify the changes from above
let mut total_2 = 0;
let x = v.iter_with_mask();
for z in x {
total_2 += z.item;
// test that the 8th bit is now set.
assert!(z.matches_mask(&0b10000000));
}
// test that T was modified
assert_eq!(total_2, total * 2);
}
BitmaskVec provides convenient filtering methods that return iterators over items matching specific bitmasks:
Returns an iterator over items (T) that match the given bitmask:
fn main() {
use cj_bitmask_vec::prelude::*;
let mut tasks = BitmaskVec::<u8, String>::new();
const ACTIVE: u8 = 0b00000001;
const INACTIVE: u8 = 0b00000010;
const COMPLETED: u8 = 0b00000100;
tasks.push_with_mask(ACTIVE, "Write documentation".to_string());
tasks.push_with_mask(INACTIVE, "Review code".to_string());
tasks.push_with_mask(ACTIVE, "Run tests".to_string());
tasks.push_with_mask(COMPLETED, "Deploy to production".to_string());
// Get all active tasks
let active_tasks: Vec<&String> = tasks.filtered(&ACTIVE).collect();
assert_eq!(active_tasks.len(), 2);
println!("Active tasks: {:?}", active_tasks);
}
Returns a mutable iterator over items (T) that match the given bitmask:
fn main() {
use cj_bitmask_vec::prelude::*;
let mut scores = BitmaskVec::<u8, i32>::new();
const BONUS_ELIGIBLE: u8 = 0b00000001;
const REGULAR: u8 = 0b00000010;
scores.push_with_mask(BONUS_ELIGIBLE, 85);
scores.push_with_mask(REGULAR, 75);
scores.push_with_mask(BONUS_ELIGIBLE, 92);
scores.push_with_mask(REGULAR, 68);
// Apply bonus to eligible scores
for score in scores.filtered_mut(&BONUS_ELIGIBLE) {
*score += 10; // Add 10 point bonus
}
assert_eq!(scores[0], 95); // 85 + 10
assert_eq!(scores[1], 75); // unchanged
assert_eq!(scores[2], 102); // 92 + 10
assert_eq!(scores[3], 68); // unchanged
}
Returns an iterator over BitmaskItem objects that match the given bitmask:
fn main() {
use cj_bitmask_vec::prelude::*;
let mut tasks = BitmaskVec::<u8, String>::new();
const URGENT: u8 = 0b00000001;
const NORMAL: u8 = 0b00000010;
const LOW: u8 = 0b00000100;
const ARCHIVED: u8 = 0b00001000;
tasks.push_with_mask(URGENT, "Fix critical bug".to_string());
tasks.push_with_mask(NORMAL, "Update documentation".to_string());
tasks.push_with_mask(URGENT | LOW, "Refactor old code".to_string());
tasks.push_with_mask(URGENT | ARCHIVED, "Legacy system issue".to_string());
// Process urgent tasks and check their additional flags
for task_item in tasks.filtered_with_mask(&URGENT) {
println!("Urgent task: {}", task_item.item);
if task_item.matches_mask(&ARCHIVED) {
println!(" -> This is an archived urgent task");
}
if task_item.matches_mask(&LOW) {
println!(" -> This urgent task also has low priority");
}
}
}
Returns a mutable iterator over BitmaskItem objects that match the given bitmask:
fn main() {
use cj_bitmask_vec::prelude::*;
let mut tasks = BitmaskVec::<u8, String>::new();
const PENDING: u8 = 0b00000001;
const PROCESSING: u8 = 0b00000010;
const COMPLETED: u8 = 0b00000100;
tasks.push_with_mask(PENDING, "Task A".to_string());
tasks.push_with_mask(PENDING, "Task B".to_string());
tasks.push_with_mask(COMPLETED, "Task C".to_string());
// Start processing all pending tasks
for task_item in tasks.filtered_with_mask_mut(&PENDING) {
// Update the task status
task_item.set_mask(PROCESSING);
// Modify the task name to show progress
task_item.item.push_str(" (in progress)");
}
// Verify the changes
assert_eq!(tasks[0], "Task A (in progress)");
assert_eq!(tasks[1], "Task B (in progress)");
assert_eq!(tasks[2], "Task C"); // unchanged
}
This crate includes comprehensive benchmarks to measure the performance of various BitmaskVec operations. The benchmarks cover:
- Basic Operations:
new()
,with_capacity()
,push()
,push_with_mask()
- Indexing Operations: Index access,
pop()
,pop_with_mask()
- Iteration Operations:
iter()
,iter_with_mask()
,iter_mut()
,iter_with_mask_mut()
- Filtering Operations:
filter_mask()
, mask matching during iteration - Collection Operations:
append()
,clear()
,resize()
,resize_with_mask()
- Different Bitmask Types: Performance comparison across u8, u16, u32, and u64 bitmasks
To run the benchmarks:
cargo bench
This will run all benchmarks and generate detailed performance reports. The benchmarks test with different data sizes (100, 1000, and 10000 elements) to show how performance scales.
The benchmarks will generate HTML reports (if you have gnuplot installed) in the target/criterion/
directory, providing detailed performance analysis including:
- Timing measurements with statistical analysis
- Performance comparisons across different input sizes
- Regression detection across benchmark runs
- Detailed plots and charts (with gnuplot)
- Added
filtered()
method for filtering items by bitmask - Added
filtered_mut()
method for mutable filtering of items by bitmask - Added
filtered_with_mask()
method for filtering with access to both items and bitmasks - Added
filtered_with_mask_mut()
method for mutable filtering with access to both items and bitmasks - Enhanced documentation with comprehensive examples for all filtering methods
- Added benchmarks for all new filtering methods