Skip to content

cse-kiet/PCSE25-55

Repository files navigation

Title of Project: Breast Cancer Classification and Detection through Advanced Pre-processing and Deep learning Techniques

Team Members:

  1. Sajal Bhilatia (2100290100143, CSE-C)
  2. Rachit Verma (2100290100124, CSE-B)
  3. Harsh Rastogi (2200290109006, CSE-A)

Steps for Execution:

  1. Clone the repository (git clone https://github.com/cse-kiet/PCSE25-55.git)
  2. Set up the Python environment (Use Python 3.8+ (preferably in a virtual environment))
  3. Install dependencies (pip install -r requirements.txt)
  4. Download and organize the dataset (Place mammogram images under Dataset/Benign/ and Dataset/Malignant/)
  5. Run image preprocessing (Execute preprocessing.ipynb or preprocess.py to: Correct orientation Remove pectoral muscle Apply CLAHE Remove noise and segment ROI)
  6. Train models (Open and run train_models.ipynb to train VGG16, ResNet50, MobileNet, and Custom CNN)
  7. Evaluate results (Use evaluation.ipynb to compare model performance using accuracy, precision, recall, F1-score) DATASET USED- https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset

Checklist:

  1. Final Project Report
  2. Certificate VII Semester (Dated: December 2024).
  3. Certificate VIII Semester (Dated: May 2025).
  4. Synopsis
  5. Final Presentation
  6. Source Code
  7. Database dump (.sql file)
  8. If a web project, then a Docker file for deployment
  9. README (This file)

About

PCSE25-55

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •