A collection of cosmograph notebooks.
This repository contains visualization notebooks for various datasets for various projects.
The notebooks all use cosmodata to source, cache, and manage data. The notebooks are self-sufficient (they pip install the stuff they need to install, source the data they need, etc.)
The raw data consists of structured information from sources like academic publications, GitHub repositories, political debates, and Spotify playlists. The prepared datasets (linked in notebooks) feature embeddings and 2D projections that enable scatter and force-directed graph visualizations.
- Raw Data: Academic publications metadata from the EuroVis conference, including titles, abstracts, authors, and awards.
- Prepared Data: merged_artifacts.parquet (5599 rows, 18 columns)
- Potential columns for visualization:
- X & Y Coordinates:
x
,y
- Point Size:
n_tokens
(number of tokens in the abstract) - Color: Cluster labels (
cluster_05
,cluster_08
, etc.) - Label:
title
- X & Y Coordinates:
- More:
- Potential columns for visualization:
- Raw Data: Transcript of a political debate between Kamala Harris and Donald Trump.
- Prepared Data: harris_vs_trump_debate_with_extras.parquet (1,141 rows, 21 columns)
- Potential columns for visualization:
- X & Y Coordinates:
tsne__x
,tsne__y
,pca__x
,pca__y
- Point Size:
certainty
- Color:
speaker_color
- Label:
text
- X & Y Coordinates:
- More:
- Potential columns for visualization:
- Raw Data: Metadata on popular songs from various playlists, including holiday songs and the greatest 500 songs.
- Prepared Data: holiday_songs_spotify_with_embeddings.parquet (167 rows, 27 columns)
- Potential columns for visualization:
- X & Y Coordinates:
umap_x
,umap_y
,tsne_x
,tsne_y
- Point Size:
popularity
- Color:
genre
(derived from playlist) - Label:
track_name
- X & Y Coordinates:
- More:
- Potential columns for visualization:
- Raw Data: Collection of 1,638 famous quotes.
- Prepared Data: micheleriva_1638_quotes_planar_embeddings.parquet (1,638 rows, 3 columns)
- Potential columns for visualization:
- X & Y Coordinates:
x
,y
- Label:
quote
- X & Y Coordinates:
- More:
- Potential columns for visualization:
- Raw Data: Data related to prompt injection attacks and defenses.
- Prepared Data: prompt_injection_w_umap_embeddings.tsv (662 rows, 6 columns)
- Potential columns for visualization:
- X & Y Coordinates:
x
,y
- Point Size:
size
- Color:
label
- Label:
text
- X & Y Coordinates:
- More:
- Potential columns for visualization:
- Raw Data: Conversations from AI chat systems.
- Prepared Data: lmsys_with_planar_embeddings_pca500.parquet (2,835,490 rows, 38 columns)
- Potential columns for visualization:
- X & Y Coordinates:
x_umap
,y_umap
- Point Size:
num_of_tokens
- Color:
model
- Label:
content
- X & Y Coordinates:
- Related code file: lmsys_ai_conversations.py
- Potential columns for visualization:
- Raw Data: Human Connectome Project (HCP) publications and citation networks.
- Prepared Data: aggregate_titles_embeddings_umap_2d_with_info.parquet (340,855 rows, 9 columns)
- Potential columns for visualization:
- X & Y Coordinates:
x
,y
- Point Size:
n_cits
(citation count) - Color:
main_field
(research domain) - Label:
title
- X & Y Coordinates:
- Related code file: hcp.py
- Potential columns for visualization:
- Raw Data: GitHub repository metadata including stars, forks, programming languages, and repository descriptions, from kaggle dataset
- Prepared Data: github_repositories.parquet (3,065,063 rows, 28 columns)
- Potential columns for visualization:
- X & Y Coordinates:
x
,y
- Point Size:
stars
(star count),forks
- Color:
primaryLanguage
- Label:
nameWithOwner
- X & Y Coordinates:
- Related code file: github_repos.py
- Potential columns for visualization: