Code repository for AIED25 paper: Can Large Language Models Match Tutoring System Adaptivity? A Benchmarking Study
.
├── README.md
├── experiment.ipynb # main experiment procedure source code
├── llm_recommendation_proxy # python package for prompting various LLMs hosted on OpenAI API and AWS
│ ├── __init__.py
│ ├── llm_client
│ │ ├── __init__.py
│ │ ├── abstract_llm_client.py
│ │ ├── aws_bedrock_llm_client.py
│ │ ├── inference_settings.py
│ │ └── openai_llm_client.py
│ ├── prompt_formatter.py # demonstrates LLM prompt template used in this study
│ ├── router.py
│ ├── tutor_settings
│ │ ├── __init__.py
│ │ ├── few_shot_example_statements.py
│ │ ├── knowledge_components.py
│ │ ├── persona_statements.py
│ │ └── tutor_id.py
│ └── util.py
├── openai.key # stores OpenAI API key, please supply your key here to run prompting
├── pyproject.toml
└── requirements.txt
Please have a Python environment ready, and any Python 3.8+ version should suffice. Please run pip install -r requirements.txt
to install necessary dependencies. Run pip install .
to install the local llm_recommendation_proxy
package. If you wish to execute code in the jupyter notebook, install ipykernel
with pip install ipykernel
.
If you wish to use our package to prompt LLMs:
- Supply and save your OpenAI API key in the
openai.key
file. - Install and configure
aws-cli
on your machine with AWS API keys in order to gain access to Llama models hosted on AWS.