HealthCheckAI is an end-to-end machine learning project that predicts the risk of ICU transfer for hospital patients using vital signs and lab results.
- Predicts patient deterioration risk using a Random Forest Classifier
- Trained on synthetic EHR data (age, vitals, labs, etc.)
- SHAP explainability for feature attribution
- Streamlit frontend for live clinical risk prediction
- REST API via FastAPI for system integration
- Docker & Docker Compose setup for deployment
git clone https://github.com/yourusername/healthcheckai.git
cd healthcheckai
docker-compose up --build
- Streamlit: http://localhost:8501
- FastAPI Docs: http://localhost:8000/docs
The project uses synthetic data with features like:
age
,gender
,admission_type
,comorbidities
heart_rate
,respiratory_rate
,systolic_bp
,temperature
hemoglobin
,creatinine
,lactate
,white_cell_count
Label: risk_label
= 1 indicates ICU transfer risk.
- Python, Pandas, scikit-learn, SHAP
- Streamlit, FastAPI, Docker
- Synthetic data generated for reproducibility
├── data/ # Raw and processed datasets
├── models/ # Trained model, scaler, SHAP plots
├── app/
│ ├── streamlit_app.py # Streamlit UI
│ └── api.py # FastAPI backend
├── notebooks/ # EDA and feature engineering
├── Dockerfile # Container build
├── docker-compose.yml # Multi-service orchestration
├── requirements.txt # Python dependencies
└── README.md # Project overview
Send a POST request to /predict
:
{
"age": 70,
"comorbidities": 3,
"heart_rate": 105,
"respiratory_rate": 25,
"systolic_bp": 85,
"temperature": 38.1,
"hemoglobin": 11.5,
"creatinine": 1.2,
"lactate": 3.0,
"white_cell_count": 9.5,
"gender": "Male",
"admission_type": "Emergency"
}
MIT