Reference repository containing a list of topics across various sessions from the Data Science and Analytics Industry Readiness Program 2025 course at ICT Academy of Kerala.
Session No. | Session Name | Notes | Notebook | Open in Colab |
---|---|---|---|---|
1 | Life Skills | session_01.md | ||
2 | IT Foundations for Data Science | session_02.md | ||
3 | Design Thinking 1 | session_03.md | ||
4 | Design Thinking 2 | session_04.md | ||
5 | Software Development Life Cycle | session_05.md | ||
6 | Demystifying Terms: DS, ML, AI | session_06.md | ||
7 | Setting UP | session_07.md | ||
8 | Python : Data Types and Operators | session_08.md | Python_Datatypes_Operators.ipynb | Open in Colab, Open in Colab |
9 | Control Flow | session_09.md | ||
10 | Loops & Functions in Python | session_10.md | basics_of_functions.ipynb, iterative_statements_functions.ipynb | Open in Colab |
11 | Object Oriented Programming (OOP) | session_11.md | OOPs_basics.ipynb | Open in Colab |
12 | Coding Best Practices | session_12.md | ||
13 | Python Case Study | session_13.md | ||
14 | Version Control | session_14.md | ||
15 | Math Notations and Descriptive Statistics | session_15.md | ||
16 | Soft Skills: Communication Skills | session_16.md | ||
17 | Inferential Statistics | session_17.md | ||
18 | Statistics Case Study | session_18.md | ||
19 | Linear Algebra for Data Science | session_19.md | ||
20 | Probability for Data Science | session_20.md | ||
21 | Linear Algebra & Probability Case Study | session_21.md | ||
22 | Calculus for Data Science | session_22.md | ||
23 | Numpy and Pandas | session_23.md | numpy_pandas | |
24 | Case Study on Numpy and Pandas | session_24.md | ||
25 | Data Engineering with Python | session_25.md | ||
26 | SQL Basics and CRUD | session_26.md | ||
27 | Soft Skills: Emotional Intelligence | session_27.md | ||
28 | SQL Join, Groupby and Window Function | session_28.md | ||
29 | SQL Case Study | session_29.md | ||
30 | Read Data From Various Sources | session_30.md | Image_Processing.ipynb | |
31 | Data Aquisition Case Study | session_31.md | ||
32 | Data Ingenstion Techniques | session_32.md | ||
33 | ETL Vs. ELT | session_33.md | ||
34 | Data Warehousing Concepts | session_34.md | ||
35 | Data Visualization and Feature Engineering | session_35.md | Plotting.ipynb | Open in Colab |
36 | Tableau Dashboard Design | session_35.md | ||
37 | Tableau Case Study | session_37.md | ||
38 | Soft Skills: Teamwork and Collaboration | session_38.md | ||
39 | Handling Missing Values | session_39.md | ||
40 | Encoding, Scaling, Normalization, Corrleation | session_40.md | ||
41 | Case Study Data Preprocessing | session_41.md | Data_Preprocessing_2.ipynb | |
42 | Linear Regression | session_42.md | ||
43 | LR NB KNN Hyperparameters | session_43.md | Bias_Variance.ipynb | |
44 | SVM DT RF | session_44.md | ||
45 | Case Study on Supervised Learning | session_45.md | ||
46 | Bagging Boosting Stacking Cascading | session_46.md | Bagging_Boosting.ipynb | |
47 | K-Means Agglomerative Clustering | session_47.md | KMeans_Scratch.ipynb | |
48 | Case Study on Unsupervised Learning | session_48.md | ||
49 | Soft Skills: Problem Solving and Decision Making | session_49.md | ||
50 | Feature reduction vs Dimensionality reduction, DBScan,PCA | session_50.md | ||
51 | Introduction to HTML and CSS | session_51.md | ||
52 | Introduction to Flask | session_52.md | ||
53 | Fast API and Streamlit | session_53.md | ||
54 | Structing Data Science Projects | session_54.md | ||
55 | Cloud Fundamentals Devops and MLOps | session_55.md | ||
56 | Deep Learning | session_56.md | ||
57 | Prompt Engineering and GPT | session_57.md | ||
58 | Big Data Eco-System | session_58.md | ||
59 | Case Study | session_59.md | ||
60 | Soft Skills: Personal Branding and Professional Etiquette | session_60.md | ||
61 | Interview Skills | session_61.md | ||
62 | Mock Interview | session_62.md |