CodeMentor AI is a fine-tuned language model specialized for solving coding interview questions, built on top of TinyLlama-1.1B-Chat, trained with 20K+ prompts, and deployed with a sleek ChatGPT-style UI using Streamlit.
- Fine-tuned LLM using HuggingFace Transformers
- Trained on 20K+ high-quality coding problems (CodeAlpaca dataset)
- Clean ChatGPT-style frontend built with Streamlit
- Docker-ready for easy deployment
- Optimized for local + cloud usage
- Can run inference via terminal or web UI
Flan-T5-small
(HuggingFace)Transformers
+Datasets
Streamlit
Docker
for packagingRender
orHuggingFace Spaces
for deployment
Config | Value |
---|---|
Model | google/flan-t5-small |
Epochs | 6 |
Batch Size | 1 (with gradient accumulation) |
Learning Rate | 5e-5 |
Max Length | 512 tokens |
GPU | GTX 1650 (4GB VRAM) |
Total Samples | ~20,000 examples |
Training Time | ~4 hours |
CodeMentor-AI/ │ ├── data/ # Raw + Processed Datasets ├── model/codementor-flan/ # Saved fine-tuned model ├── train/ # Preprocessing + Training scripts ├── app/app.py # Streamlit Chat UI ├── requirements.txt # All dependencies ├── Dockerfile # Docker config ├── render.yaml # Optional Render deployment config
git clone https://github.com/chetan10510/CodeMentor-AI.git
cd CodeMentor-AI
python -m venv .venv
.venv\Scripts\activate # Windows
pip install -r requirements.txt
streamlit run app/app.py