Skip to content

cathaleya/adaptive-testing-moodle-experiment

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive testing moodle experiment

#Repositori ini berisi logika minimal untuk pengujian adaptif menggunakan: #IRT (Model Rasch) #BKT (Bayesian Knowledge Tracing melalui pyBKT)

#Struktur #models/bkt_model.py: Model BKT adaptif dengan pelacakan keterampilan.

#models/irt_model.py: Model IRT sederhana dengan pembaruan theta secara online.

#data/question_metadata.csv: Metadata soal, berisi keterampilan dan tingkat kesulitan soal.

#data/response_logs.csv: Log jawaban pengguna.

#requirements.txt: Instal dependensi dengan menjalankan pip install -r requirements.txt.

Contoh Penggunaan

from models.bkt_model import BKTModel
from models.irt_model import IRTModel
import pandas as pd

metadata = pd.read_csv("data/question_metadata.csv")

# Initialize and train BKT
bkt = BKTModel(metadata)
bkt.add_response("user1", "q1", 1)
bkt.add_response("user1", "q2", 0)
bkt.train()
print("Weakest skill:", bkt.get_weakest_skill())

# Initialize and update IRT
irt = IRTModel(metadata)
irt.update("q1", 1)
irt.update("q2", 0)
print("Next IRT question:", irt.get_most_informative(["q1", "q2"]))

About

IRT vs BKT assessment experiment

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%