Skip to content

bongodev/ml-ops-playground

Repository files navigation

ML-Ops Playground

A machine learning operations (MLOps) project demonstrating MLflow integration for experiment tracking and model management using the Iris dataset.

Project Structure

ml-ops-playground/
├── .dockerignore
├── .gitignore
├── Dockerfile.mlflow
├── Dockerfile.training
├── README.md
├── compose.yml
├── requirements.txt
└── training.py

Prerequisites

  • Docker and Docker Compose
  • Python 3.9+
  • MLflow
  • scikit-learn

Quick Start

  1. Clone the repository:
git clone https://github.com/yourusername/ml-ops-playground.git
cd ml-ops-playground
  1. Start the MLflow server and training service:
docker compose up --build

The services will:

Project Components

MLflow Server

Training Pipeline

  • Uses scikit-learn's Iris dataset
  • Implements Logistic Regression model
  • Logs metrics, parameters, and model artifacts to MLflow

Model Details

  • Algorithm: Logistic Regression
  • Dataset: Iris Classification
  • Metrics: Accuracy
  • Parameters:
    • solver: lbfgs
    • max_iter: 1000
    • multi_class: auto
    • random_state: 8888

Environment Variables

Development

To modify the training pipeline:

  1. Update training.py
  2. Rebuild and run containers:
docker compose up -d --build

License

[Your License Here]

Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a new Pull Request

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages