python 3.7, anaconda or miniconda, https://github.com/Kaggle/kaggle-api, https://github.com/trent-b/iterative-stratification
kaggle competitions download -c bengaliai-cv19
conda create --name bengali-ai python=3.7 pandas pillow
conda install -c trent-b iterative-stratification
conda install -c conda-forge pyarrow tqdm imgaug
conda install albumentations -c albumentations
pip install pretrainedmodels
## For CPU
conda install pytorch torchvision cpuonly -c pytorch
## For GPU with cuda 10.0
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
https://www.youtube.com/watch?v=8J5Q4mEzRtY
mkdir inputandpip install --user kaggleand add path usingexport PATH="$HOME/.local/bin:$PATH"and add kaggle credential using https://github.com/Kaggle/kaggle-api/blob/master/README.md- Download dataset in
inputfolder usingkaggle competitions download -c bengaliai-cv19command - unzip it using
unzip bengaliai-cv19.zip - run
create_folds.py - check the .parquet data file using
check_dataframes.py, if data is readable then conintue - Create .pickle files of the dataset using
create_image_pickles.py. This is because training will be faster with pickles - run
run.shfile to train the model. Change the training configurations onrun.sh - model will be saved in src folder
- Use the notebook located in
infer.zipfor kaggle submission and upload your model to the notebook
- AUC/ROC
- T-SNE
- Use different loss functions like center-loss
- Use different feature extractors like arcFace