Skip to content

`sdrf-pipelines` is the official SDRF file validator and converts SDRF to pipeline configuration files

License

Notifications You must be signed in to change notification settings

bigbio/sdrf-pipelines

Repository files navigation

sdrf-pipelines | SDRF Validator | SDRF Converter

Python application Python package Upload Python Package Codacy Badge PyPI version PyPI - Downloads

Validate and convert SDRF files with sdrf-pipelines and its parse_sdrf CLI.

This is the official SDRF file validation tool and it can convert SDRF files to different workflow configuration files such as MSstats, OpenMS and MaxQuant.

Installation

pip install sdrf-pipelines

Validate SDRF files

You can validate an SDRF file by executing the following command:

parse_sdrf validate-sdrf --sdrf_file {here_the_path_to_sdrf_file}

New JSON Schema-Based Validation

The SDRF validator now uses a YAML schema-based validation system that makes it easier to define and maintain validation rules. The new system offers several advantages:

Key Features

  1. YAML-Defined Schemas: All validation templates are defined in YAML files:

    • default.yaml - Common fields for all SDRF files (includes mass spectrometry fields)
    • human.yaml - Human-specific fields
    • vertebrates.yaml - Vertebrate-specific fields
    • nonvertebrates.yaml - Non-vertebrate-specific fields
    • plants.yaml - Plant-specific fields
    • cell_lines.yaml - Cell line-specific fields
    • disease_example.yaml - Example schema for disease terms with multiple ontologies
  2. Enhanced Ontology Validation:

    • Support for multiple ontologies per field
    • Rich error messages with descriptions and examples
    • Special value handling for "not available" and "not applicable"
  3. Schema Inheritance: Templates can extend other templates, making it easy to create specialized validation rules.

Example JSON Schema

{
  "name": "characteristics_cell_type",
  "sdrf_name": "characteristics[cell name]",
  "description": "Cell name",
  "required": true,
  "validators": [
    {
      "type": "whitespace",
      "params": {}
    },
    {
      "type": "ontology",
      "params": {
        "ontologies": ["cl", "bto", "clo"],
        "allow_not_applicable": true,
        "allow_not_available": true,
        "description": "The cell name should be a valid Cell Ontology term",
        "examples": ["hepatocyte", "neuron", "fibroblast"]
      }
    }
  ]
}

Simplified Validation Command

A simplified validation command is also available:

parse_sdrf validate-sdrf-simple {here_the_path_to_sdrf_file} --template {template_name}

This command provides a more straightforward interface for validating SDRF files, without the additional options for skipping specific validations.

Creating Custom Validation Templates

You can create your own validation templates by defining JSON schema files. Here's how:

  1. Create a JSON file with your validation rules:

    {
      "name": "my_template",
      "description": "My custom template",
      "extends": "default",
      "min_columns": 7,
      "fields": [
        {
          "name": "characteristics_my_field",
          "sdrf_name": "characteristics[my field]",
          "description": "My custom field",
          "required": true,
          "validators": [
            {
              "type": "whitespace",
              "params": {}
            },
            {
              "type": "ontology",
              "params": {
                "ontology_name": "my_ontology",
                "allow_not_applicable": true,
                "description": "My field description",
                "examples": ["example1", "example2"]
              }
            }
          ]
        }
      ]
    }
  2. Place the file in the sdrf_pipelines/sdrf/schemas/ directory.

  3. Use your template with the validation command:

    parse_sdrf validate-sdrf --sdrf_file {path_to_sdrf_file} --template my_template

The template system supports inheritance, so you can extend existing templates to add or override fields.

Convert SDRF files

sdrf-pipelines provides a multitude of converters which take an SDRF file and other inputs to create configuration files consumed by other software.

Convert to OpenMS

parse_sdrf convert-openms -s sdrf.tsv

Description:

  • experiment settings (search engine settings etc.)
  • experimental design

The experimental settings file contains one row for every raw file. Columns contain relevevant parameters like precursor mass tolerance, modifications etc. These settings can usually be derived from the sdrf file.

URI Filename FixedModifications VariableModifications Label PrecursorMassTolerance PrecursorMassToleranceUnit FragmentMassTolerance FragmentMassToleranceUnit DissociationMethod Enzyme
ftp://ftp.pride.ebi.ac.uk/pride/data/archive/XX/PXD324343/A0218_1A_R_FR01.raw A0218_1A_R_FR01.raw Acetyl (Protein N-term) Gln->pyro-glu (Q),Oxidation (M) label free sample 10 ppm 10 ppm HCD Trypsin
ftp://ftp.pride.ebi.ac.uk/pride/data/archive/XX/PXD324343/A0218_1A_R_FR02.raw A0218_1A_R_FR02.raw Acetyl (Protein N-term) Gln->pyro-glu (Q),Oxidation (M) label free sample 10 ppm 10 ppm HCD Trypsin

The experimental design file contains information how to unambiguously map a single quantitative value. Most entries can be derived from the sdrf file. However, definition of conditions might need manual changes.

  • Fraction_Group identifier that indicates which fractions belong together. In the case of label-free data, the fraction group identifier has the same cardinality as the sample identifier.
  • The Fraction identifier indicates which fraction was measured in this file. In the case of unfractionated data the fraction identifier is 1 for all samples.
  • The Label identifier. 1 for label-free, 1 and 2 for SILAC light/heavy, e.g. 1-10 for TMT10Plex
  • The Spectra_Filepath (e.g., path = "/data/SILAC_file.mzML")
  • MSstats_Condition the condition identifier as used by MSstats
  • MSstats_BioReplicate an identifier to indicate replication. (MSstats requires that there are no duplicate entries. E.g., if MSstats_Condition, Fraction_Group group and Fraction number are the same - as in the case of biological or technical replication, one uses the MSstats_BioReplicate to make entries non-unique)
Fraction_Group Fraction Spectra_Filepath Label MSstats_Condition MSstats_BioReplicate
1 1 A0218_1A_R_FR01.raw 1 1 1
1 2 A0218_1A_R_FR02.raw 1 1 1
. . ... . . .
1 15 A0218_2A_FR15.raw 1 1 1
2 1 A0218_2A_FR01.raw 1 2 2
. . ... . . .
. . ... . . .
10 15 A0218_10A_FR15.raw 1 10 10

For details, please see the MSstats documentation

Convert to MaxQuant: Usage

parse_sdrf convert-maxquant -s sdrf.tsv -f {here_the_path_to_protein_database_file} -m {True or False} -pef {default 0.01} -prf {default 0.01} -t {temporary folder} -r {raw_data_folder} -n {number of threads:default 1} -o1 {parameters(.xml) output file path} -o2 {maxquant experimental design(.txt) output file path}

eg.

parse_sdrf convert-maxquant -s /root/ChengXin/Desktop/sdrf.tsv -f /root/ChengXin/MyProgram/search_spectra/AT/TAIR10_pep_20101214.fasta -r /root/ChengXin/MyProgram/virtuabox/share/raw_data/ -o1 /root/ChengXin/test.xml -o2 /root/ChengXin/test_exp.xml -t /root/ChengXin/MyProgram/virtuabox/share/raw_data/ -pef 0.01 -prf 0.01 -n 4
  • -s : SDRF file
  • -f : fasta file
  • -r : spectra raw file folder
  • -mcf : MaxQuant default configure path (if given, Can add new modifications)
  • -m : via matching between runs to boosts number of identifications
  • -pef : posterior error probability calculation based on target-decoy search
  • -prf : protein score = product of peptide PEPs (one for each sequence)
  • -t : place on SSD (if possible) for faster search,It is recommended not to be the same as the raw file directory
  • -n : each thread needs at least 2 GB of RAM,number of threads should be ≤ number of logical cores available(otherwise, MaxQuant can crash)

Description

  • maxquant parameters file (mqpar.xml)
  • maxquant experimental design file (.txt)

The maxquant parameters file mqpar.xml contains the parameters required for maxquant operation.some settings can usually be derived from the sdrf file such as enzyme, fixed modification, variable modification, instrument, fraction and label etc.Set other parameters as default.The current version of maxquant supported by the script is 1.6.10.43

Some parameters are listed:

  • <fastaFilePath>TAIR10_pep_20101214.fasta</fastaFilePath>
  • <matchBetweenRuns>True</matchBetweenRuns>
  • <maxQuantVersion>1.6.10.43</maxQuantVersion>
  • <tempFolder>C:/Users/test</tempFolder>
  • <numThreads>2</numThreads>
  • <filePaths>
    • <string>C:\Users\search_spectra\AT\130402_08.raw</string>
    • <string>C:\Users\search_spectra\AT\130412_08.raw</string>
  • </filePaths>
  • <experiments>
    • <string>sample 1_Tr_1</string>
    • <string>sample 2_Tr_1</string>
  • </experiments>
  • <fractions>
    • <short>32767</short>
    • <short>32767</short>
  • </fractions>
  • <paramGroupIndices>
    • <int>0</int>
    • <int>1</int>
  • </paramGroupIndices>
  • <msInstrument>0</msInstrument>
  • <fixedModifications>
    • <string>Carbamidomethyl (C)</string>
  • </fixedModifications>
  • <enzymes>
    • <string>Trypsin</string>
  • </enzymes>
  • <variableModifications>
    • <string>Oxidation (M)</string>
    • <string>Phospho (Y)</string>
    • <string>Acetyl (Protein N-term)</string>
    • <string>Phospho (T)</string>
    • <string>Phospho (S)</string>
  • </variableModifications>

For details, please see the MaxQuant documentation

The maxquant experimental design file contains name,Fraction,Experiement and PTM column.Most entries can be derived from the sdrf file.

  • Name raw data file name.
  • Fraction In the Fraction column you must assign if the corresponding files shown in the left column belong to a fraction of a gel fraction. If your data is not obtained through gel-based pre-fractionation you must assign the same number(default 1) for all files in the column Fraction.
  • Experiment In the column named as Experiment if you want to combine all experimental replicates as a single dataset to be analyzed by MaxQuant, you must enter the same identifier for the files which should be concatenated . However, if you want each individual file to be treated as a different experiment which you want to compare further you should assign different identifiers to each of the files as shown below.
Name Fraction Experiment PTM
130402_08.raw 1 sample 1_Tr_1
130412_08.raw 1 sample 2_Tr_1

Convert to MSstats annotation file: Usage

parse_sdrf convert-msstats -s ./testdata/PXD000288.sdrf.tsv -o ./test1.csv
  • -s : SDRF file
  • -c : Create conditions from provided (e.g., factor) columns as used by MSstats
  • -o : annotation out file path
  • -swath : from openswathtomsstats output to msstats default false
  • -mq : from maxquant output to msstats default false

Convert to NormalyzerDE design file: Usage

parse_sdrf convert-normalyzerde -s ./testdata/PXD000288.sdrf.tsv -o ./testPXD000288_design.tsv
  • -s : SDRF file
  • -c : Create groups from provided (e.g., factor) columns as used by NormalyzerDE, for example -c ["characteristics[spiked compound]"] (optional)
  • -o : NormalyzerDE design out file path
  • -oc : Out file path for comparisons towards first group (optional)
  • -mq : Path to MaxQuant experimental design file for mapping MQ sample names. (optional)

Help

$ parse_sdrf --help
Usage: parse_sdrf [OPTIONS] COMMAND [ARGS]...

  This is the main tool that gives access to all commands to convert SDRF
  files into pipelines specific configuration files.

Options:
  --version   Show the version and exit.
  -h, --help  Show this message and exit.

Commands:
  build-index-ontology  Convert an ontology file to an index file
  convert-maxquant      convert sdrf to maxquant parameters file and generate
                        an experimental design file
  convert-msstats       convert sdrf to msstats annotation file
  convert-normalyzerde  convert sdrf to NormalyzerDE design file
  convert-openms        convert sdrf to openms file output
  split-sdrf            Command to split the sdrf file
  validate-sdrf         Command to validate the sdrf file
  validate-sdrf-simple  Simple command to validate the sdrf file

Citations

  • Dai C, Füllgrabe A, Pfeuffer J, Solovyeva EM, Deng J, Moreno P, Kamatchinathan S, Kundu DJ, George N, Fexova S, Grüning B, Föll MC, Griss J, Vaudel M, Audain E, Locard-Paulet M, Turewicz M, Eisenacher M, Uszkoreit J, Van Den Bossche T, Schwämmle V, Webel H, Schulze S, Bouyssié D, Jayaram S, Duggineni VK, Samaras P, Wilhelm M, Choi M, Wang M, Kohlbacher O, Brazma A, Papatheodorou I, Bandeira N, Deutsch EW, Vizcaíno JA, Bai M, Sachsenberg T, Levitsky LI, Perez-Riverol Y. A proteomics sample metadata representation for multiomics integration and big data analysis. Nat Commun. 2021 Oct 6;12(1):5854. doi: 10.1038/s41467-021-26111-3. PMID: 34615866; PMCID: PMC8494749. Manuscript

  • Perez-Riverol, Yasset, and European Bioinformatics Community for Mass Spectrometry. "Toward a Sample Metadata Standard in Public Proteomics Repositories." Journal of Proteome Research 19.10 (2020): 3906-3909. Manuscript

About

`sdrf-pipelines` is the official SDRF file validator and converts SDRF to pipeline configuration files

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages