This repository contains MATLAB code for:
Gatto, B. B., Colonna, J. G., dos Santos, E. M., Koerich, A. L., & Fukui, K. (2022). Discriminative Singular Spectrum Classifier with applications on bioacoustic signal recognition. Digital Signal Processing. https://doi.org/10.1016/j.dsp.2022.103858
We present a bioacoustic signal classifier that transforms input signals into subspaces via Singular Spectrum Analysis (SSA) and applies a discriminative mechanism to extract robust features. The model handles nonuniform signal lengths natively, tolerates noise without segmentation, and requires minimal training data. Evaluated on frog, bee, and mosquito datasets, our approach achieves competitive accuracy against state-of-the-art bioacoustic classifiers. Code available at https://github.com/bernardo-gatto/DSSC
- Singular Spectrum Analysis (SSA) for compact, segmentation-free representation
- Discriminative subspace extraction for noise tolerance and feature robustness
- Validated on three challenging bioacoustic datasets (anuran, bee, mosquito)
-
Clone the repository
git clone https://github.com/bernardo-gatto/DSSC.git cd DSSC
-
Requirements
- MATLAB R2019b or later
- Signal Processing Toolbox
-
Usage Example
% Load dataset (e.g., Beehive_Autocorrelation_Data_set_L_45.mat) load('Beehive_Autocorrelation_Data_set_L_45.mat'); % variable: Data % Train and test the DSSC model % Adjust parameters in DSSA.m and MSSA.m as needed model = DSSA(Data); accuracy = MSSA(model, Data); % Plot average similarity metrics sim_avr(accuracy);
DSSA.m
– Discriminative Singular Spectrum Analysis trainingMSSA.m
– Multi-class SSA-based classificationEVD.m
– Eigenvalue decomposition utilitysim_avr.m
– Plotting average similarity/accuracy results
(Repository also includes supporting data files and example scripts.)
Please cite:
@article{gatto2022dssc,
title={Discriminative Singular Spectrum Classifier with applications on bioacoustic signal recognition},
author={Gatto, Bernardo Bentes and Colonna, Juan Gabriel and dos Santos, Eulanda Miranda and Koerich, Alessandro Lameiras and Fukui, Kazuhiro},
journal={Digital Signal Processing},
year={2022},
doi={10.1016/j.dsp.2022.103858}
}
MIT License – see LICENSE for details.