Skip to content

A tool for converting between Pydantic models and Protobuf messages, enabling the generation of Pydantic `BaseModel` classes from `.proto` files.

License

Notifications You must be signed in to change notification settings

begonia-org/pydantic-protobuf-gen

Repository files navigation

English|简体中文

protobuf-pydantic-gen

A tool for converting between Pydantic models and Protobuf messages, enabling the generation of Pydantic BaseModel classes from .proto files.

Features

  • Supports conversion of Protobuf basic types to Python basic types.
  • Converts Protobuf definition language to Pydantic BaseModel classes.
  • Converts Protobuf definition language to sqlmodel ORM models.
  • Implements to_protobuf and from_protobuf methods for BaseModel classes, facilitating bidirectional conversion between Pydantic models and Protobuf messages.
  • Allows specifying Pydantic BaseModel Field parameters in Protobuf descriptor files.

Installation

pip install protobuf-pydantic-gen

Example

syntax = "proto3";

import "google/protobuf/descriptor.proto";
import "protobuf_pydantic_gen/pydantic.proto";
import "google/protobuf/timestamp.proto";
import "google/protobuf/any.proto";
import "constant.proto";
import "example2.proto";
package pydantic_example;
message Nested {

  string name = 1[(pydantic.field) = {description: "Name of the example",example: "'ohn Doe",alias: "full_name",default: "John Doe",max_length:128,primary_key:true}];
}
message Example {
    option (pydantic.database) = { 
        as_table: true
        table_name: "users",
        compound_index:{
            indexs:["name","age"],
            index_type:"UNIQUE",
            name:"uni_name_age"
        },
        compound_index:{
            indexs:["name"],
            index_type:"PRIMARY",
            name:"index_name"
        }
    };

  string name = 1[(pydantic.field) = {description: "Name of the example",alias: "full_name",default: "John Doe",max_length:128,primary_key:true}];
  optional int32 age = 2 [(pydantic.field) = {description: "Age of the example",alias: "years",default: "30"}];
  // Note that the default value here is a string format, using single quotes, representing a JSON array
  repeated string emails = 3 [(pydantic.field) = {description: "Emails of the example",default:'["example@example.com","example2@example.com"]'}];
  repeated Example2 examples = 9 [(pydantic.field) = {description: "Nested message",sa_column_type:"JSON"}];
  map<string, google.protobuf.Any> entry = 4 [(pydantic.field) = {description: "Properties of the example",default:"{}"}];
Nested nested=8[(pydantic.field) = {description: "Nested message",sa_column_type:"JSON"}];
  google.protobuf.Timestamp created_at = 5 [(pydantic.field) = {description: "Creation date of the example",default: "datetime.datetime.now()",required: true}];
  ExampleType type = 6 [(pydantic.field) = {description: "Type of the example",default: "ExampleType.TYPE1",sa_column_type:"Enum[ExampleType]"}];
  float score = 7 [(pydantic.field) = {description: "Score of the example",default: "0.0",gt: 0.0,le: 100.0,field_type: "Integer"}];
}
# !/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@File    :   example.py
@Time    :
@Desc    :
'''


import datetime

from .constant_model import ExampleType

from .example2_model import Example2

from google.protobuf import message as _message, message_factory

from protobuf_pydantic_gen.ext import PySQLModel, PydanticModel, model2protobuf, pool, protobuf2model

from pydantic import BaseModel, ConfigDict, Field as _Field

from sqlmodel import Column, Enum, Field, Integer, JSON, PrimaryKeyConstraint, SQLModel, UniqueConstraint

from typing import Any, Dict, List, Optional, Type


class Nested(BaseModel):
    model_config = ConfigDict(protected_namespaces=())

    name: Optional[str] = _Field(
        description="Name of the example",
        example="'ohn Doe",
        default="John Doe",
        alias="full_name",
        primary_key=True,
        max_length=128)

    def to_protobuf(self) -> _message.Message:
        _proto = pool.FindMessageTypeByName("pydantic_example.Nested")
        _cls: Type[_message.Message] = message_factory.GetMessageClass(_proto)
        return model2protobuf(self, _cls())

    @classmethod
    def from_protobuf(cls: Type[PydanticModel], src: _message.Message) -> PydanticModel:
        return protobuf2model(cls, src)


class Example(SQLModel, table=True):
    model_config = ConfigDict(protected_namespaces=())
    __tablename__ = "users"
    __table_args__ = (
        UniqueConstraint(
            "name", "age", name='uni_name_age'), PrimaryKeyConstraint(
            "name", name='index_name'),)
    name: Optional[str] = Field(
        description="Name of the example",
        default="John Doe",
        alias="full_name",
        primary_key=True,
        max_length=128,
        sa_column_kwargs={
            'comment': 'Name of the example'})
    age: Optional[int] = Field(
        description="Age of the example",
        default=30,
        alias="years",
        sa_column_kwargs={
            'comment': 'Age of the example'})
    emails: Optional[List[str]] = Field(description="Emails of the example", default=[
                                        'example@example.com', 'example2@example.com'], sa_column_kwargs={'comment': 'Emails of the example'})
    examples: Optional[List[Example2]] = Field(
        description="Nested message", default=None, sa_column=Column(JSON, doc="Nested message"))
    entry: Optional[Dict[str, Any]] = Field(description="Properties of the example", default={
    }, sa_column=Column(JSON, doc="Properties of the example"))
    nested: Optional[Nested] = Field(description="Nested message", sa_column=Column(JSON, doc="Nested message"))
    created_at: datetime.datetime = Field(
        description="Creation date of the example",
        default=datetime.datetime.now(),
        sa_column_kwargs={
            'comment': 'Creation date of the example'})
    type: Optional[ExampleType] = Field(
        description="Type of the example",
        default=ExampleType.TYPE1,
        sa_column=Column(
            Enum[ExampleType],
            doc="Type of the example"))
    score: Optional[float] = Field(
        description="Score of the example",
        default=0.0,
        le=100.0,
        sa_type=Integer,
        sa_column_kwargs={
            'comment': 'Score of the example'})

    def to_protobuf(self) -> _message.Message:
        _proto = pool.FindMessageTypeByName("pydantic_example.Example")
        _cls: Type[_message.Message] = message_factory.GetMessageClass(_proto)
        return model2protobuf(self, _cls())

    @classmethod
    def from_protobuf(cls: Type[PySQLModel], src: _message.Message) -> PySQLModel:
        return protobuf2model(cls, src)

Usage

python3 -m grpc_tools.protoc --proto_path=./protos -I=./protos -I=./ \
--python_out=./pb --pyi_out=./pb --grpc_python_out=./pb --pydantic_out=./models \
"./protos/example.proto"

About

A tool for converting between Pydantic models and Protobuf messages, enabling the generation of Pydantic `BaseModel` classes from `.proto` files.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published