A machine learning system to predict obesity levels using health and lifestyle data, with a Tkinter-based GUI.
- 2111 samples from Mexico, Peru, and Colombia
- 16 features (e.g., Age, BMI, Eating habits)
- Target: 7 obesity categories
- Created BMI feature
- Handled missing values (mean/mode)
- One-Hot & Label Encoding
- Outlier handling (IQR)
- Feature Scaling (StandardScaler)
- Selected top features (RandomForest)
- Logistic Regression, SVM, KNN, Decision Tree
- Random Forest, Gradient Boosting, Neural Network
- Stacking (ensemble meta-model)
- Users enter data โ get prediction
๐ Files gui.py: Interface
obesity_classification.py: Model training
.pkl files: Models & encoders
๐จโ๐ป Team 107 โ Ain Shams University Supervised by T.A. Maryam El Sawaf Contributors: ุจุณู ูุฉุ ู ุฑูู ุ ูุงุทู ุฉุ ููุฑุงูุ ุนุจุฏุงูุฑุญู ูุ ู ุญู ุฏ