The goal of the acmgscaler
R package is to provide a robust approach for gene-level calibration of variant effect scores, such as computational predictions or functional assay results, against ACMG/AMP evidence thresholds.
The package is lightweight and written entirely in base R, without additional dependencies.
A plug-and-play Google Colab notebook with a simple interface is available for all users.
You can install the stable version of acmgscaler
directly from GitHub using the devtools
package:
# install devtools if you haven't already
install.packages('devtools')
# install the acmgscaler package from GitHub
devtools::install_github('badonyi/acmgscaler')
library(acmgscaler)
data('variant_data', package = 'acmgscaler')
# calibrate example data
calib <- calibrate(
df = variant_data,
value = 'score',
prior = 0.1,
group = 'gene'
)
# likelihood_ratio data for each variant
calib$BRCA1$likelihood_ratios
# score thresholds for ACMG/AMP evidence levels
calib$BRCA1$score_thresholds
The Colab uses a non-exported internal function to display the score intervals:
acmgscaler:::prettify_score_thresholds(calib$BRCA1$score_thresholds)
ACMG/AMP evidence strength score
1 Benign-VeryStrong <NA>
2 Benign-Strong > -0.61243
3 Benign-Moderate > -0.77564
4 Benign-Supporting > -0.84782
5 Pathogenic-Supporting < -1.01955
6 Pathogenic-Moderate < -1.08209
7 Pathogenic-Strong < -1.17951
8 Pathogenic-VeryStrong < -2.14538
If you find this package useful, refer to Badonyi & Marsh, bioRxiv (2025); doi: 10.1101/2025.05.16.654507v2