Skip to content

avinashyadav16/ALL-ABOUT-MACHINE-LEARNING

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ALL-ABOUT-MACHINE-LEARNING

Welcome to the ALL-ABOUT-MACHINE-LEARNING repository! This repository is a comprehensive collection of resources, code, and concepts related to machine learning, data handling, and visualization.


📂 Directory Structure

Here is an overview of the folders and their purpose:

Core Libraries and Tools:

  • 00_MATPLOTLIB: Learn how to use Matplotlib for creating static, animated, and interactive visualizations.
  • 00_NUMPY: Resources and examples for numerical computations with NumPy.
  • 00_PANDAS: Tutorials and use cases for data manipulation with Pandas.
  • 00_PLOTLY: Interactive visualizations with Plotly.
  • 00_SEABORN: Advanced statistical data visualization using Seaborn.

Data Handling:

  • 01_HANDLING_DATASET: Best practices and code examples for handling datasets.
  • 02_KNOWING_ABOUT_THE_DATA: Tools and techniques for understanding the structure and content of datasets.

Data Analysis:

  • 03_UNIVARIATE_ANALYSIS: Performing univariate analysis on datasets.
  • 04_BIVARIATE_ANALYSIS: Techniques for analyzing relationships between two variables.
  • 05_PANDAS_PROFILING: Automate data exploration and profiling using Pandas Profiling.

Preprocessing and Transformation:

  • 06_STANDARDIZATION: Standardizing datasets for machine learning workflows.
  • 07_NORMALIZATION: Normalizing datasets for better model performance.
  • 08_ORDINAL_ENCODING: Encoding ordinal categorical variables.
  • 09_ONE_HOT_ENCODING: Encoding nominal categorical variables using one-hot encoding.
  • 10_COLUMN_TRANSFORMER: Applying transformations to specific columns in datasets.
  • 11_SKLEARN_PIPELINE: Building machine learning pipelines with scikit-learn.
  • 12_FUNCTION_TRANSFORMER: Custom transformations using FunctionTransformer in scikit-learn.
  • 13_POWER_TRANSFORMER: Power transformations for stabilizing variance and minimizing skewness.
  • 14_BINNING_AND_BINARIZATION: Techniques for binning continuous data and binarization.

Others:

  • 00_PROLOG: Resources related to Prolog programming language.
  • ML_CONCEPTS: Core concepts and algorithms in machine learning.

About

Basic explanation of all the Machine Learning Topics. [NumPy] [Matplotlib] [Pandas] [Plotly] [Algorithms] [Models]

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published