Skip to content

atomisticnet/gibbsml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GibbsML – Prediction of oxide formation free energies

The GibbsML package implements a Gaussian process machine learning model for the prediction of temperature-dependent oxide formation free energies. This information can be used, for example, for the construction of Ellingham diagrams. See http://ellingham.energy-materials.org for web app powered by GibbsML.

Reference

If you make use of GibbsML or part of the package, please cite the following reference:

J. A. Garrido Torres, V. Gharakhanyan, N. Artrith, T. Hoffmann Eegholm, and A. Urban, "From zero Kelvin quantum mechanics to high-temperature metallurgy with machine learning", (2021) ASAP

Contact

J. A. Garrido Torres (jagt@princeton.edu)
A. Urban (a.urban@columbia.edu)

Installation

Installation with pip:

pip install --user .

Or in editable (developer) mode:

pip install --user -e .

Usage

See the tutorials subdirectory for Jupyter notebooks that demonstrate the usage of the package.

About

Prediction of reaction free energies with machine learning

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •