A BERT-ResNet fusion model with built-in explainability through attention visualization. Processes text-image pairs while exposing decision-making mechanisms via heatmaps and token highlighting.
Begin HERE!
- Dual Encoder Architecture: BERT (text) + ResNet (image) with cross-attention fusion
- Explainability Layer: Real-time visualization of:
- Image regions influencing decisions (OpenCV heatmaps)
- Key text tokens (HTML/CSS highlighting)
- Cross-modal attention patterns
- CLIP-style Training: Contrastive loss for alignment learning
- Production Ready: ONNX export & FastAPI deployment
├── models/ # Encoders & fusion layers
├── data/ # Processing scripts
├── training/ # Contrastive loss implementation
├── explainability/ # Attention visualization tools
├── demo/ # Gradio interface
flowchart TB
%% Main Flow
A[Data Collection & Preprocessing] --> B[Text Encoder]
B --> C[Training Pipeline]
C --> D[Evaluation & Fine-Tuning]
D --> E[Deployment & Documentation]
%% Data Collection Blocks
A1["Text Corpus"] --> A
A2["Tokenization"] --> A
%% Encoder Blocks
B1["BERT Architecture"] --> B
B2["Attention Mechanisms"] --> B
%% Training Pipeline Blocks
C1["Masked Language Modeling"] --> C
C2["Hyperparameter Tuning"] --> C
%% Evaluation Blocks
D1["Quantitative Metrics"] --> D
D2["Qualitative Analysis"] --> D
%% Deployment Blocks
E1["Model Export (ONNX)"] --> E
E2["API Development (FastAPI)"] --> E
E3["Documentation"] --> E
Single encoder system with self-attention mechanisms and explainability features
flowchart TB
%% Main Flow with Integrated Blocks
A[Data Collection & Preprocessing] --> B[Modality-Specific Encoders]
B --> C[Multi-Modal Fusion Mechanism]
C --> D[Training Pipeline]
D --> E[Evaluation & Fine-Tuning]
E --> F[Deployment & Documentation]
%% Data Collection Blocks
A1["Text Data"] --> A
A2["Image Data"] --> A
%% Encoder Blocks
B1["Text Encoder (BERT)"] --> B
B2["Image Encoder (ResNet)"] --> B
%% Fusion Mechanism Blocks
C1["Concatenation"] --> C
C2["Cross-Attention"] --> C
%% Training Pipeline Blocks
D1["Contrastive Loss"] --> D
D2["Hyperparameter Tuning"] --> D
%% Evaluation Blocks
E1["Quantitative Metrics"] --> E
E2["Qualitative Analysis"] --> E
%% Deployment Blocks
F1["Model Export (ONNX)"] --> F
F2["API Development (FastAPI)"] --> F
F3["Documentation"] --> F
- Decide the project structure and data to use
- Setup repository, project and environment
- Perform data analysis on textual data
- Evolution of Large Language Models
- implement code snippets
- add context reference notes on each paragraph
- Introduction to Modern Transformers
- Experiment with different architectural techniques
- Training the model
- Evaluating the model and explaining decision patterns
- Optimization techniques
- Model attention pattern visualization
- Export best model to production format
- Introduction to multimodal learning and model visualization
- Understanding multimodal data and its importance
- Foundational patterns with Multimodal LLMs
- Experiment with different architectural techniques
- Training the multimodal model
- Evaluating the multimodal model
- Advanced techniques for multimodal fusion
- Multimodal attention pattern visualization
- Export best model to production format
- Final edits, error analysis, and future work documentation
- DONE!
Feel free to reach out on discord!