This package provides Python bindings for the DepthSense 325 camera, allowing you to extract various data streams including color maps, depth maps, confidence maps, vertices, and UV maps. The integration enables computer vision and depth sensing applications using Python.
Before installing, ensure you have the following dependencies:
- Python Libraries:
- NumPy:
pip install numpy
- OpenCV:
pip install opencv-python
- Matplotlib:
pip install matplotlib
- NumPy:
- DepthSense 325 SDK:
- Download from the SoftKinetic support website
- Follow the SDK installation instructions for your platform
- Clone the repository:
git clone https://github.com/asadkhalid-softdev/DepthSense_325.git
cd DepthSense_325
- Install the Python package:
python setup.py install
- Configure system libraries:
sudo cp softkinetic.conf /etc/ld.so.conf.d/
sudo ldconfig
Note: If you cloned the repository to a location other than your home directory, edit the path in
softkinetic.conf
accordingly.
Run the example script to verify your installation:
python depthsense_grabber.py
This will initialize the camera and display the various data streams.
import depthsense as ds
# Initialize the camera
context = ds.Context()
camera = context.get_device()
# Configure camera parameters
camera.enable_depth(ds.DepthMode.QVGA)
camera.enable_color(ds.ColorMode.HD720)
# Start capturing
context.start_capture()
# Get frames
depth_frame = camera.get_depth_frame()
color_frame = camera.get_color_frame()
# Process data
depth_map = depth_frame.get_depth_map()
color_map = color_frame.get_color_map()
For more detailed information about the API and usage examples, refer to the documentation in the docs/
directory.
- Ensure the camera is properly connected via USB 3.0
- Verify that the SDK is correctly installed
- Check system permissions for USB device access
This project is licensed under the MIT License - see the LICENSE file for details.
- SoftKinetic for providing the DepthSense SDK
- Contributors to the Python wrapper
For a video tutorial, visit: DepthSense 325 Python Tutorial