Skip to content

Type-safe async workflow orchestration for language models. Zero dependencies, 100% test coverage.

License

Notifications You must be signed in to change notification settings

artificial-sapience/ClearFlow

ClearFlow

Coverage Status PyPI Python License

Type-safe async workflow orchestration for language models. Explicit routing, immutable state, zero dependencies.


Why ClearFlow?

  • Predictable control flow – explicit routes, no hidden magic
  • Immutable, typed state – frozen state passed via NodeResult
  • One exit rule – exactly one termination route enforced
  • Tiny surface area – one file, three concepts: Node, NodeResult, Flow
  • 100% test coverage – every line tested
  • Zero runtime deps – bring your own clients (OpenAI, Anthropic, etc.)

Installation

pip install clearflow

60-second Quickstart

from typing import TypedDict
from clearflow import Flow, Node, NodeResult

# 1) Define typed state
class ChatState(TypedDict):
    messages: list[dict[str, str]]

# 2) Define a node
class ChatNode(Node[ChatState]):
    async def exec(self, state: ChatState) -> NodeResult[ChatState]:
        # Call your LLM here
        # reply = await llm.chat(state["messages"])
        reply = {"role": "assistant", "content": "Hello!"}
        new_state: ChatState = {"messages": [*state["messages"], reply]}
        return NodeResult(new_state, outcome="success")

# 3) Build flow with explicit routing
chat = ChatNode()
flow = (
    Flow[ChatState]("ChatBot")
    .start_with(chat)
    .route(chat, "success", None)  # terminate on success
    .build()
)

# 4) Run it
async def main() -> None:
    result = await flow({"messages": [{"role": "user", "content": "Hi"}]})
    print(result.state["messages"][-1]["content"])  # "Hello!"

import asyncio
asyncio.run(main())

Core Concepts

Node[T]

A unit that transforms state of type T.

  • prep(state: T) -> T – optional pre-work/validation
  • exec(state: T) -> NodeResult[T]required; return new state + outcome
  • post(result: NodeResult[T]) -> NodeResult[T] – optional cleanup/logging

Nodes are async and pure (no shared mutable state).

NodeResult[T]

Holds the new state and an outcome string used for routing.

Flow[T]

A fluent builder that wires nodes together with explicit routing:

Flow[T]("Name")
  .start_with(a)
  .route(a, "ok", b)
  .route(b, "done", None)  # exactly one termination
  .build()                 # -> returns a Node[T] you can await

Routing: next node is (from_node.name, outcome). If no name set, uses class name.
Nested flows: a built flow is itself a Node[T] – compose flows within flows.


Example: Multi-step Pipeline

from typing import TypedDict
from clearflow import Flow, Node, NodeResult

class State(TypedDict):
    value: int

class Validate(Node[State]):
    async def exec(self, s: State) -> NodeResult[State]:
        return NodeResult(s, "valid" if s["value"] >= 0 else "invalid")

class Process(Node[State]):
    async def exec(self, s: State) -> NodeResult[State]:
        return NodeResult({"value": s["value"] * 2}, "success")

class Output(Node[State]):
    async def exec(self, s: State) -> NodeResult[State]:
        print("Final:", s["value"])
        return NodeResult(s, "done")

flow = (
    Flow[State]("Pipeline")
    .start_with(Validate())
    .route(Validate(), "valid", Process())
    .route(Validate(), "invalid", Output())  # route invalid to output
    .route(Process(), "success", Output())
    .route(Output(), "done", None)  # single termination point
    .build()
)

await flow({"value": 21})  # Final: 42

See more: Chat example | Structured output


Testing Example

Nodes are easy to test in isolation because they are pure functions over typed state:

import pytest
from clearflow import Node, NodeResult

class N(Node[int]):
    async def exec(self, x: int) -> NodeResult[int]:
        return NodeResult(x + 1, "ok")

@pytest.mark.asyncio
async def test_n() -> None:
    res = await N()(0)
    assert res.state == 1 and res.outcome == "ok"

When to Use ClearFlow

  • LLM workflows where you need explicit control
  • Systems requiring clear error handling paths
  • Projects with strict dependency requirements
  • Applications where debugging matters

ClearFlow vs PocketFlow

Aspect ClearFlow PocketFlow
State Immutable, passed via NodeResult Shared store (mutable dict)
Routing Explicit (node, outcome) routes Graph with labeled edges
Termination Exactly one None route enforced Multiple exit patterns
Type safety Full Python 3.13+ generics Dynamic
Lines 166 100

Both are minimalist. ClearFlow emphasizes type safety and explicit control. PocketFlow emphasizes brevity and shared state.


Recipes

  • Guardrails: validate node routes "invalid" → termination
  • Retries: node returns "retry" outcome → routes back to itself
  • Sub-flows: build child flow, use as node in parent
  • Parallel: multiple validate nodes → single process node

Development

# Install uv (if not already installed)
pip install --user uv   # or: pipx install uv

# Clone and set up development environment
git clone https://github.com/consent-ai/ClearFlow.git
cd ClearFlow
uv sync --group dev      # Creates venv and installs deps automatically
./quality-check.sh       # Run all checks

Contributing

See CONTRIBUTING.md


License

MIT


Acknowledgments

Inspired by PocketFlow's Node-Flow-State pattern.