Skip to content

armbrustsamuel/NearOODAutoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

NearOODAutoencoder

In the Autoencoders to detect manifestation shift in medical images research, we implemented a simple autoencoder architecture, with latent space containing a 6 times image reduction of original medical images.

The key component of this research if available at autoencoder.py file.

Key elements of this architecture:

  • Style transfer concepts
    • Instance Normalization (IN) in shallow layers
    • Batch Normalization (BN) in deeper layers
  • Perceptual loss (as loss function)
  • Adam optimizer
  • Use of loss as a metric for in-distribution (ID) or out-of-distribution (OOD) samples

Datasets:

[...]

Results published at:

# Autoencoders to detect manifestation shift in medical images
@inproceedings{freitas2025autoencoder,
  author={SA Freitas, CA da Costa, GO Ramos},
  booktitle={Simposio Brasileiro de Computação Aplicada a Saúde {SBCAS}, 2025, Porto Alegre, BRAZIL, June 9-13, 2025},
  publisher = {{IEEE}},
  title={Autoencoders to detect manifestation shift in medical images},
  year={2025}
}

About

Autoencoders for near-OOD detection

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages