Skip to content

Releases: aramis-lab/clinicadl

v2.0.0rc2

25 Sep 14:18
a39355f
Compare
Choose a tag to compare
v2.0.0rc2 Pre-release
Pre-release
Release v2.0.0rc2

v2.0.0rc1

25 Jul 13:45
f1f64cc
Compare
Choose a tag to compare
v2.0.0rc1 Pre-release
Pre-release

[2.0.0rc1] – 2025-07-24

This release marks a major overhaul of ClinicaDL, refactoring the entire framework into a modular, API-first design.

Previously centered around the command line, ClinicaDL now provides a flexible Python API that allows users to build and customize deep learning pipelines with high-level configuration objects. The goal is to make the code more maintainable, scalable, and user-extensible, while preserving the core values of ClinicaDL: reproducibility, robust support for neuroimaging, and data leakage prevention.

This is the first release candidate for version 2.0.0, with the final release planned for September 2025.

Highlights

  • Full rewrite of the core library — now fully object-oriented and modular.
  • New modules (see next section)
  • New MAPS architecture for managing model outputs and metadata.
  • Clear configuration-based design with JSON files and dedicated config classes based on pydantic.
  • Modern deep learning tooling: PyTorch, MONAI, TorchIO, HuggingFace, MLflow, and Weights & Biases support.
  • Extensive and fully updated documentation.

Added

Core Modules:

  • Trainer: high-level training controller managing full model lifecycle.
  • ClinicaDLModel: flexible base class to define and extend custom architectures.
  • CapsDataset: redesigned dataset class in the new dataset module, tailored for CAPS/MAPS.
  • Splitter: new module for managing train/val/test split logic.
  • Maps: a structured and reproducible representation of model outputs and metadata.

Configuration Classes:

  • OptimizationConfig, DataloaderConfig, LossConfig, TransformConfig, MetricConfig, etc.
  • Designed to be composable and readable using TOML files.
  • Stored alongside results to ensure experiment traceability.

Integration with Modern Tools:

  • Transforms: use of torchio and monai.transforms for preprocessing and data augmentation.
  • Metrics: integration with MONAI metrics and support for custom metrics.
  • Networks: fully compatible with native PyTorch models.
  • Logging: support for MLflow and Weights & Biases (W&B) out of the box.
  • HuggingFace: integration point for loading pretrained models and tokenizers.

Documentation:

  • Fully rewritten Sphinx documentation with improved structure and usage examples.
  • Interactive object documentation and visual MAPS structure navigation.

Changed

  • All pipelines removed and replaced by a unified API-driven interface.
  • Internal architecture redesigned for independent modules that can be combined or extended.
  • CLI options replaced by TOML configuration — reducing duplication and increasing clarity.
  • All training now done through Trainer, using configuration objects and custom hooks.

Removed

  • All legacy CLI commands (e.g., clinicadl train, clinicadl random-search, etc.).
  • Old pipelines (train_from_json, preprocessing run, etc.).
  • JSON-based configuration files.
  • Hardcoded command-line flags and argparse logic.

Breaking Changes

  • Backward compatibility is broken with all 1.x versions.
  • You must migrate to the new API and TOML-based configuration system.

ClinicaDL v1.6.1

05 Apr 11:42
eb08045
Compare
Choose a tag to compare

ClinicaDL 1.6.1

Fixed

  • Fix sorting particpants sessions with 2 digit,
  • Fix interpret —-save_nifti issue,
  • Fix BIDS file format for pet,

Changed

  • Change 2 digits session label to 3 digits,
  • Change black and isort for ruff and codespell,
  • Update type hint and docstring,

New

  • Add --fsdp option
  • Add --valid_longitudinal option to allow the validation on longitudinal data,

ClinicaDL v1.6.0

16 Feb 17:56
c6177e4
Compare
Choose a tag to compare
pyproject release (#530)

ClinicaDL v1.5.1

07 Oct 14:01
b2f145d
Compare
Choose a tag to compare

ClinicaDL 1.5.1

Fixed

  • Fix retrocompatibility for new option in maps.json

Changed

  • Change MapsManager architecture by adding Callbacks

New

  • Add --fully_sharded_data_parallelism option
  • Add --emisions_calculator option with codecarbon
  • Add the semi-supervised domain adaptation network proposed for the MICCAI DART workshop.

ClinicaDL v1.5.0

12 Sep 12:29
a1464c5
Compare
Choose a tag to compare

ClinicaDL 1.5.0

Fixed

  • Fix adapt command

Changed

  • SSIM is now executed on GPU when possible

New

  • Add new command generate artifacts to generate noise/contract/motion
  • Add options for data augmentation
  • Add fine-tuning option
  • Add --amp for automatic mixed precision
  • Add --track_exp option to track your parameters during training with MLflow or WandB

ClinicaDL v1.4.0

09 Jun 13:42
dde6437
Compare
Choose a tag to compare

Fixed

  • Fix --diagnoses and --merged_tsv option bug in clinicadl get-labels
  • Fix Pathlib bugs
  • Fix get_tsv_paths function bug.
  • Fix a bug for which it was impossible to use predict without specifying the splits and selection metrics.

Changed

  • Changed default batch size to 8 for clinicadl predict
  • Changed VAEs main class

New

  • Add --n_proc option in clinicadl generate pipelines for parallelization.
  • Add --split to clinicadl predict
  • Add new VAE networks.
  • Add pytorch function to summarize
  • Add --size_reduction and --size_reduction_factor options to clinicadl train, clinicadl predict and clinicadl interpret.
  • Add SSIM2D, SSIM3D metrics for VAE.
  • Add --save_latent_space option to clinicadl train and clinicadl predict.
  • Add clinicadl generate trvial_motion
  • Add Data augmentation with torchio

Release ClinicaDL 1.3.1

15 May 15:49
15198d6
Compare
Choose a tag to compare

ClinicaDL 1.3.1

Fixed

  • Fix TypeError when running ClinicaDL.
  • Fix --extract_json option bug in clinicadl prepare-data.
  • Fix clinicadl tsvtools get-labels error finding clinica iotools missing-modalities output.

Changed

  • Changed clinicadl tsvtools get-labels output directory.

New

  • Add --caps_directory option in clinicadl tsvtools get-labels.

Release ClinicaDL v1.3.0

13 Apr 12:15
22b49c6
Compare
Choose a tag to compare

ClinicaDL 1.3.0

New

  • Add new command quality-check pet-linear.
  • Add new command generate hypometabolic.
  • Add new network architecture: Resnet3D and SqueezeExcitationCNN.
  • Add flair-linear modality for prepare-data command.
  • Add pytorch profiler.
  • Add --save_nifti option for interpretcommand.
  • Add --output_dir argument for tsvtools get-labels command

Changed

** Core: **

  • Transition from os to pathlib.
  • Update data CI.
  • Improve maps_manager.
  • Change --acq_label option for --tracer.
  • Update tutorial.

ClinicaDL 1.2.0

15 Feb 15:39
43f7056
Compare
Choose a tag to compare

ClinicaDL 1.2.0

Changed

** Core: **

  • Add ClinicaDL installation with pipx.
  • Improve logging.
  • Add method argument to the interpret command to choose between the new Grad-CAM method and the gradient method.
  • Change extract command to prepare-data.
  • Change output of get-labels, split and kfold commands to one TSV per split instead of one per label.
  • Change tsvtool command to tsvtools.
  • Change tsvtools getlabels command to tsvtools get-labels and remove the progression column in the TSV output.
  • Add new commands: tsvtools get-progression, tsvtools get-metadata, tsvtools prepare-experiment (split + kfold), and tsvtools adapt.
  • Update data CI.
  • Add a new model for quality check

Fixed

  • Fix quality-check t1-linear