-
Notifications
You must be signed in to change notification settings - Fork 1.5k
[datafusion-spark] Implement factorical
function
#16125
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use std::any::Any; | ||
use std::sync::Arc; | ||
|
||
use arrow::array::{Array, Int64Array}; | ||
use arrow::datatypes::DataType; | ||
use arrow::datatypes::DataType::{Int32, Int64}; | ||
use datafusion_common::cast::as_int32_array; | ||
use datafusion_common::{exec_err, DataFusionError, Result, ScalarValue}; | ||
use datafusion_expr::Signature; | ||
use datafusion_expr::{ColumnarValue, ScalarFunctionArgs, ScalarUDFImpl, Volatility}; | ||
|
||
/// <https://spark.apache.org/docs/latest/api/sql/index.html#factorial> | ||
#[derive(Debug)] | ||
pub struct SparkFactorial { | ||
signature: Signature, | ||
aliases: Vec<String>, | ||
} | ||
|
||
impl Default for SparkFactorial { | ||
fn default() -> Self { | ||
Self::new() | ||
} | ||
} | ||
|
||
impl SparkFactorial { | ||
pub fn new() -> Self { | ||
Self { | ||
signature: Signature::exact(vec![Int32], Volatility::Immutable), | ||
aliases: vec![], | ||
} | ||
} | ||
} | ||
|
||
impl ScalarUDFImpl for SparkFactorial { | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn name(&self) -> &str { | ||
"factorial" | ||
} | ||
|
||
fn signature(&self) -> &Signature { | ||
&self.signature | ||
} | ||
|
||
fn return_type(&self, _arg_types: &[DataType]) -> Result<DataType> { | ||
Ok(Int64) | ||
} | ||
|
||
fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> { | ||
spark_factorial(&args.args) | ||
} | ||
|
||
fn aliases(&self) -> &[String] { | ||
&self.aliases | ||
} | ||
} | ||
|
||
const FACTORIALS: [i64; 21] = [ | ||
1, | ||
1, | ||
2, | ||
6, | ||
24, | ||
120, | ||
720, | ||
5040, | ||
40320, | ||
362880, | ||
3628800, | ||
39916800, | ||
479001600, | ||
6227020800, | ||
87178291200, | ||
1307674368000, | ||
20922789888000, | ||
355687428096000, | ||
6402373705728000, | ||
121645100408832000, | ||
2432902008176640000, | ||
]; | ||
|
||
pub fn spark_factorial(args: &[ColumnarValue]) -> Result<ColumnarValue, DataFusionError> { | ||
if args.len() != 1 { | ||
return Err(DataFusionError::Internal( | ||
"`factorial` expects exactly one argument".to_string(), | ||
)); | ||
} | ||
|
||
match &args[0] { | ||
ColumnarValue::Scalar(ScalarValue::Int32(value)) => { | ||
let result = compute_factorial(*value); | ||
Ok(ColumnarValue::Scalar(ScalarValue::Int64(result))) | ||
} | ||
ColumnarValue::Scalar(other) => { | ||
exec_err!("`factorial` got an unexpected scalar type: {:?}", other) | ||
} | ||
ColumnarValue::Array(array) => match array.data_type() { | ||
Int32 => { | ||
let array = as_int32_array(array)?; | ||
|
||
let result: Int64Array = array.iter().map(compute_factorial).collect(); | ||
|
||
Ok(ColumnarValue::Array(Arc::new(result))) | ||
} | ||
other => { | ||
exec_err!("`factorial` got an unexpected argument type: {:?}", other) | ||
} | ||
}, | ||
} | ||
} | ||
|
||
#[inline] | ||
fn compute_factorial(num: Option<i32>) -> Option<i64> { | ||
num.filter(|&v| (0..=20).contains(&v)) | ||
.map(|v| FACTORIALS[v as usize]) | ||
} | ||
|
||
#[cfg(test)] | ||
mod test { | ||
use crate::function::math::factorial::spark_factorial; | ||
use arrow::array::{Int32Array, Int64Array}; | ||
use datafusion_common::cast::as_int64_array; | ||
use datafusion_common::ScalarValue; | ||
use datafusion_expr::ColumnarValue; | ||
use std::sync::Arc; | ||
|
||
#[test] | ||
fn test_spark_factorial_array() { | ||
let input = Int32Array::from(vec![ | ||
Some(-1), | ||
Some(0), | ||
Some(1), | ||
Some(2), | ||
Some(4), | ||
Some(20), | ||
Some(21), | ||
None, | ||
]); | ||
|
||
let args = ColumnarValue::Array(Arc::new(input)); | ||
let result = spark_factorial(&[args]).unwrap(); | ||
let result = match result { | ||
ColumnarValue::Array(array) => array, | ||
_ => panic!("Expected array"), | ||
}; | ||
|
||
let actual = as_int64_array(&result).unwrap(); | ||
let expected = Int64Array::from(vec![ | ||
None, | ||
Some(1), | ||
Some(1), | ||
Some(2), | ||
Some(24), | ||
Some(2432902008176640000), | ||
None, | ||
None, | ||
]); | ||
|
||
assert_eq!(actual, &expected); | ||
} | ||
|
||
#[test] | ||
fn test_spark_factorial_scalar() { | ||
let input = ScalarValue::Int32(Some(5)); | ||
|
||
let args = ColumnarValue::Scalar(input); | ||
let result = spark_factorial(&[args]).unwrap(); | ||
let result = match result { | ||
ColumnarValue::Scalar(ScalarValue::Int64(val)) => val, | ||
_ => panic!("Expected scalar"), | ||
}; | ||
let actual = result.unwrap(); | ||
let expected = 120_i64; | ||
|
||
assert_eq!(actual, expected); | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -23,6 +23,44 @@ | |
|
||
## Original Query: SELECT factorial(5); | ||
## PySpark 3.5.5 Result: {'factorial(5)': 120, 'typeof(factorial(5))': 'bigint', 'typeof(5)': 'int'} | ||
#query | ||
#SELECT factorial(5::int); | ||
query I | ||
SELECT factorial(5::INT); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Perfect! For anyone wondering, this test comes from here: And the url above comes from the testing guide: |
||
---- | ||
120 | ||
|
||
query I | ||
SELECT factorial(a) | ||
FROM VALUES | ||
(-1::INT), | ||
(0::INT), (1::INT), (2::INT), (3::INT), (4::INT), (5::INT), (6::INT), (7::INT), (8::INT), (9::INT), (10::INT), | ||
(11::INT), (12::INT), (13::INT), (14::INT), (15::INT), (16::INT), (17::INT), (18::INT), (19::INT), (20::INT), | ||
(21::INT), | ||
(NULL) AS t(a); | ||
---- | ||
NULL | ||
1 | ||
1 | ||
2 | ||
6 | ||
24 | ||
120 | ||
720 | ||
5040 | ||
40320 | ||
362880 | ||
3628800 | ||
39916800 | ||
479001600 | ||
6227020800 | ||
87178291200 | ||
1307674368000 | ||
20922789888000 | ||
355687428096000 | ||
6402373705728000 | ||
121645100408832000 | ||
2432902008176640000 | ||
NULL | ||
NULL | ||
|
||
query error Error during planning: Failed to coerce arguments to satisfy a call to 'factorial' function | ||
SELECT factorial(5::BIGINT); |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Minor nit is that you can potentially use https://docs.rs/arrow/latest/arrow/array/struct.PrimitiveArray.html#method.unary to generate faster code but I don't think that is required