Skip to content

antonioscapellato/hardcore-ai

Repository files navigation

Software Track

software-track/
├── src/
│   └── bitbybit/
│       ├── kernel/          # hash‑kernel abstractions
│       │   ├── _base.py     # _HashKernel (provided)
│       │   ├── random.py    # RandomProjKernel (implement)
│       │   └── learned.py   # LearnedProjKernel (implement)
│       ├── nn/              # hash‑backed torch.nn layers (provided)
│       ├── utils/           # helpers (provided)
│       └── patch.py         # swaps torch.nn ⇄ bitbybit.nn
├── train.py                 # minimal training template
├── publish.py               # leaderboard uploader
├── config.py                # hashing layerwise config
└── requirements.txt

Installation

uv venv --python 3.12
source .venv/bin/activate
uv pip install -r pyproject.toml

Baseline Models

Weights are fetched from https://github.com/chenyaofo/pytorch-cifar-models using the keys

"cifar10_resnet20"
"cifar100_resnet20"

Task Checklist

  1. Implement kernels: complete RandomProjKernel and LearnedProjKernel.

  2. Train: extend train.py to fine‑tune projections (and optionally the backbone).

  3. Submit: save checkpoints to

    software-track/submission_checkpoints/<model>.pth
    

    then run

    python publish.py \
      --team-name <team-name> \
      --key <pre-shared-key>  

Submissions are unlimited within the 24‑hour window; the server keeps your best score.

Scoring

Evaluation lives in bitbybit.utils.score.calculate_submission_score.

Final Results

2nd Place (0.40 Scoring - 5% Acc. Drop)

Team

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages