Skip to content

alibakh62/recommender-systems-demo

Repository files navigation

E-Commerce Recommender Systems Demo

A comprehensive demonstration of various recommender system approaches for e-commerce applications, showcasing practical implementation, novel techniques, and production-ready deployment.

🚀 Features

  • Multiple Recommender Approaches: Collaborative filtering, content-based, hybrid models
  • Advanced Techniques: Neural collaborative filtering, attention mechanisms, multi-task learning
  • Production-Ready: API endpoints, Docker containerization, cloud deployment
  • Comprehensive Evaluation: Offline metrics, A/B testing framework, online evaluation
  • Real Datasets: Amazon product reviews, MovieLens, synthetic e-commerce data

📁 Project Structure

├── data/                   # Datasets and data processing
├── models/                 # Recommender system implementations
├── evaluation/             # Offline and online evaluation frameworks
├── api/                    # FastAPI REST API
├── deployment/             # Docker and cloud deployment configs
├── notebooks/              # Jupyter notebooks for exploration
├── tests/                  # Unit and integration tests
└── docs/                   # Documentation

🛠️ Technologies Used

  • Frameworks: PyTorch, TensorFlow, LightFM, Surprise, Implicit
  • MLOps: MLflow, Weights & Biases, DVC
  • API: FastAPI, Redis, PostgreSQL
  • Deployment: Docker, Kubernetes, AWS/GCP
  • Evaluation: RecSys evaluation metrics, A/B testing

🚀 Quick Start

  1. Clone and Setup:

    git clone <your-repo>
    cd recommender-systems-demo
    pip install -r requirements.txt
  2. Download Data:

    python scripts/download_data.py
  3. Train Models:

    python scripts/train_models.py
  4. Start API:

    python api/main.py
  5. Run Evaluations:

    python evaluation/run_offline_eval.py

📊 Models Implemented

  1. Collaborative Filtering

    • Matrix Factorization (SVD, NMF)
    • Neural Collaborative Filtering
    • LightFM (hybrid)
  2. Content-Based

    • TF-IDF + Cosine Similarity
    • Neural Content Embeddings
  3. Advanced Approaches

    • Multi-Head Attention Recommender
    • Multi-Task Learning
    • Session-Based Recommendations

📈 Evaluation Metrics

  • Offline: Precision@K, Recall@K, NDCG, MAP, MRR
  • Online: Click-through rate, Conversion rate, Revenue per user
  • A/B Testing: Statistical significance testing, lift analysis

☁️ Deployment

  • Local: Docker Compose
  • Cloud: AWS ECS, GCP Cloud Run, Azure Container Instances
  • Monitoring: Prometheus, Grafana, ELK Stack

📚 Documentation

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

📄 License

MIT License - see LICENSE file for details

About

A comprehensive demo of recommender systems for e-commerce applications

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages