A comprehensive demonstration of various recommender system approaches for e-commerce applications, showcasing practical implementation, novel techniques, and production-ready deployment.
- Multiple Recommender Approaches: Collaborative filtering, content-based, hybrid models
- Advanced Techniques: Neural collaborative filtering, attention mechanisms, multi-task learning
- Production-Ready: API endpoints, Docker containerization, cloud deployment
- Comprehensive Evaluation: Offline metrics, A/B testing framework, online evaluation
- Real Datasets: Amazon product reviews, MovieLens, synthetic e-commerce data
├── data/ # Datasets and data processing
├── models/ # Recommender system implementations
├── evaluation/ # Offline and online evaluation frameworks
├── api/ # FastAPI REST API
├── deployment/ # Docker and cloud deployment configs
├── notebooks/ # Jupyter notebooks for exploration
├── tests/ # Unit and integration tests
└── docs/ # Documentation
- Frameworks: PyTorch, TensorFlow, LightFM, Surprise, Implicit
- MLOps: MLflow, Weights & Biases, DVC
- API: FastAPI, Redis, PostgreSQL
- Deployment: Docker, Kubernetes, AWS/GCP
- Evaluation: RecSys evaluation metrics, A/B testing
-
Clone and Setup:
git clone <your-repo> cd recommender-systems-demo pip install -r requirements.txt
-
Download Data:
python scripts/download_data.py
-
Train Models:
python scripts/train_models.py
-
Start API:
python api/main.py
-
Run Evaluations:
python evaluation/run_offline_eval.py
-
Collaborative Filtering
- Matrix Factorization (SVD, NMF)
- Neural Collaborative Filtering
- LightFM (hybrid)
-
Content-Based
- TF-IDF + Cosine Similarity
- Neural Content Embeddings
-
Advanced Approaches
- Multi-Head Attention Recommender
- Multi-Task Learning
- Session-Based Recommendations
- Offline: Precision@K, Recall@K, NDCG, MAP, MRR
- Online: Click-through rate, Conversion rate, Revenue per user
- A/B Testing: Statistical significance testing, lift analysis
- Local: Docker Compose
- Cloud: AWS ECS, GCP Cloud Run, Azure Container Instances
- Monitoring: Prometheus, Grafana, ELK Stack
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
MIT License - see LICENSE file for details