A flexible interpolation library written in Rust, featuring Radial Basis Function (RBF) interpolation with support for multi-dimensional data.
- RBF interpolation with many kernels to choose from.
- Normalisation/standardisation tools if necessary.
- Input and output datasets can be of type
Vec<X>
andVec<Y>
whereX
andY
can be:f64
[f64; 3]
Vec<f64>
- Your type if you implement
Numeric
trait
- Dependency free unless handling larger datasets (use
openblas
orintel-mkl
feature) - Lagrangian interpolation with support for Chebyshev nodes (X:
Vec<f64>
and Y:Vec<[f64; 3]>
only)
Add the following to your Cargo.toml
:
[dependencies]
hologram = { version = "0.1.3" } # includes rayon
If this is still not enough, try using openblas
or intel-mkl
features.
[dependencies]
hologram = { version = "0.1.3", features = ["openblas"]} # or "intel-mkl"
Make sure you have the required dependencies installed for the features you choose. For openblas openssl is required.
For lightweight dependency-free option run cargo build --no-default-features
.
Using the Hologram library to interpolate can be done as follows:
use hologram::{Interpolator, rbf::Rbf, kernels::gaussian_kernel, numeric::linspace};
use std::f64::consts::PI;
fn blackbox(x: f64) -> f64 {
x.powi(2) + x + 2. * (2.0 * std::f64::consts::PI * x).sin()
}
fn main() -> Result<(), String> {
// Parameters
let bounds = (-5.0, 5.0);
let n_points = 50;
// Set/get inputs and outputs
let x_train: Vec<f64> = linspace(&bounds.0, &bounds.1, n_points);
let y_train: Vec<f64> = x_train.iter().map(|x| blackbox(*x)).collect();
// Create RBF interpolator
let rbf = Rbf::new(x_train.clone(), y_train, Some(gaussian_kernel), Some(1.0))?;
// Generate test points
let n_test = 500;
let x_test: Vec<f64> = linspace(&bounds.0, &bounds.1, n_test);
// Make predictions
let y_pred = rbf.predict(&x_test)?;
// Plot/compare
Ok(())
}
Plotting against other Rbf implementations (scipy, numpy) and the expected values:
use hologram::{
kernels::thin_plate_spline_kernel,
numeric::linspace,
rbf::Rbf,
Interpolator,
};
fn main() -> Result<(), String> {
// Training input: Vec<f64>
let x_train = vec![
0.000, 512.000, 1182.490, 1911.273, 2788.547,
4227.750, 6481.706, 9609.367, 11773.210,
13188.649, 14400.000,
];
// Training output: Vec<[f64; 3]>
let y_train = vec![
[6950.000, 0.000, 0.000],
[5930.999, 4386.866, 974.859],
[2498.780, 8537.536, 1897.230],
[-1993.234, 10819.437, 2404.319],
[-7051.251, 11465.688, 2547.931],
[-13549.361, 9748.529, 2166.340],
[-19093.612, 3887.659, 863.924],
[-18104.032, -5716.279, -1270.284],
[-11425.229, -10664.783, -2369.952],
[-4206.775, -11312.308, -2513.846],
[3167.219, -7987.115, -1774.914],
];
// Predict at 200 new points between min and max of training
let x_test = linspace(&x_train[0], &x_train.last().unwrap(), 200);
// Create RBF interpolator using thin-plate kernel
let rbf = Rbf::new(
x_train,
y_train,
Some(thin_plate_spline_kernel),
Some(1.0),
)?;
// Predict
let y_pred = rbf.predict(&x_test)?;
// Plot/compare
Ok(())
}
Plotting against the training data and expected values:
Using the 3d problem from before we can normalise with z-score normalisation in two ways, explicitly:
// Normalise the data [Not necessary here, but demonstrating]
let (x_train_normalised, x_mean, x_std) = normalise_data(&x_train);
let (y_train_normalised, y_mean, y_std) = normalise_data(&y_train);
// Create RBF interpolator using thin-plate kernel
let rbf = Rbf::new(
x_train_normalised,
y_train_normalised,
Some(thin_plate_spline_kernel),
Some(1.0),
)?;
// Normalise test input
let x_test_normalised = normalise_data_with(&x_test, &x_mean, &x_std);
// Predict
let y_pred_normalised = rbf.predict(&x_test_normalised)?;
// Denormalise output
let y_pred = denormalise_data(&y_pred_normalised, &y_mean, &y_std);
Or implicitly with RbfNorm
(Rbf wrapped in normalisation, for API convenience):
// Create RBF interpolator using thin-plate kernel
let rbf = RbfNorm::new(x_train, y_train, Some(thin_plate_spline_kernel), Some(1.0))?;
// Predict
let y_pred = rbf.predict(&x_test)?;
Using the hologram linear solver only, as haven't quite figured out how to configure Openblas or Mkl with Pyo3. Help here is appreciated. Simple 1d problem from before benchmarks quite well.
MIT License - See LICENSE for details.
If you'd like to support the project consider:
- Identifying the features you'd like to see implemented or bugs you'd like to fix and open an issue.
- Contributing to the code by resolving existing issues, I'm happy to have you.
- Donating to help me continue development, Buy Me a Coffee